Читаем Основы кибернетики предприятия полностью

Переменные, относимые к классу уровней, могут иметь такие единицы измерения, как «единицы в неделю», так что поначалу может показаться, что мы имеем дело с темпами. Тогда следует применить испытание системы приведением ее в состояние покоя, как это было сделано в разделе 5.1, где мы установили, что средние темпы представляют собой по существу уровни, а не темпы.

Уравнения темпов (функции решений). Уравнения темпов определяют темпы потоков между уровнями в системе. Уравнения темпов являются «функциями решений», что будет подробно рассмотрено ниже, в главе 9.

Уравнение темпа решается на основе данных о существующих в настоящее время величинах уровней в системе, которые часто включают в себя уровень, из которого исходит поток с данным темпом, и тот уровень, к которому он направлен. В свою очередь темпы потоков являются причиной изменений в уровнях. Уравнения темпов могут по типу решений относиться к «явным» или «неявным»[36]. Какая-либо разница в структуре самих уравнений при этом отсутствует.

В отношении уравнений темпов важно отметить, что они регулируют действия, которые должны произойти в системе за следующий интервал времени. В момент времени К уравнение темпа решается, чтобы определить то действие, которое будет управлять темпом потока в течение предстоящего интервала времени KL. В принципе уравнения темпов зависят только от значений уровней в момент времени К[37]. (На практике темпы, относящиеся к последнему, только что закончившемуся интервалу времени JK, могут иногда с достаточной степенью точности использоваться вместо уровня, характеризующего средний темп, в том случае, когда усреднение производится для очень короткого интервала времени.)

Уравнения темпов, как и уравнения уровней, на протяжении каждого интервала времени решаются независимо одно от другого. Взаимодействие в системе происходит при последующем воздействии темпов на уровни, которые затем в свою очередь оказывают влияние на темпы в более поздние интервалы времени. Уравнение темпа определяет действие, которое будет совершаться непосредственно в следующий момент. Если момент действия существенно близок (то есть продолжительность интервала решений DT существенно мала), то очевидно, что решение не может испытывать на себе влияния других решений, принимаемых в тот же момент времени в других частях системы[38]. Поэтому уравнения темпов независимы друг от друга и могут решаться в любой последовательности. Поскольку они зависят от значений уровней, вся группа уравнений темпов решается после того, как решены уравнения уровней.

Примером уравнения темпа может служить уравнение запаздывания исходящего потока, имеющее вид показательной функции первого порядка. Объяснение уравнения будет дано в главе 8, здесь же мы рассмотрим лишь его форму:

,

6.2, R

где

OUT — темп исходящего потока (единицы в неделю);

STORE — количество, находящееся в настоящее время в запаздывании (единицы);

DELAY — константа, средняя продолжительность времени, необходимого для преодоления запаздывания (недели).

Это второе наше уравнение представляет собой уравнение темпа, о чем свидетельствует буква «R» в его шифре. Уравнение определяет величину темпа «OUT» и показывает, какое значение он будет иметь на протяжении следующего интервала времени KL. Темп должен быть равен величине уровня «STORE» в настоящий момент К, деленной на константу, названную «DELAY» (без какого-либо обозначения времени, поскольку это константа). Ко времени решения уравнения количественные значения для STORE и DELAY должны быть, конечно, известными.

Вспомогательные уравнения. Уравнение темпа может нередко стать очень сложным, если его действительно формулировать лишь на основе одних уровней, как это утверждалось до сих пор. К тому же темп может быть часто лучше определен, если пользоваться одним или несколькими понятиями, имеющими самостоятельный смысл и характеризуемыми в свою очередь уровнями системы. Часто бывает удобно разбить уравнение темпа на отдельные части, которые мы будем называть вспомогательными уравнениями. Вспомогательное уравнение оказывает большую помощь при решении задачи приведения модели в полное соответствие с действительной системой, так как с его помощью можно определить в отдельности многие факторы, принимаемые в расчет при выработке решения.

Вспомогательные уравнения являются промежуточными; они могут быть подставлены одно в другое (если имеется несколько «слоев» вспомогательных уравнений) и далее — в уравнения темпов[39]. Путем алгебраической подстановки вспомогательные переменные могут быть исключены из уравнений, что достигается ценой увеличения сложности уравнений темпов и потери в то же время простоты и ясности значения отдельных уравнений модели.

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес