Читаем Основы кибернетики предприятия полностью

В действительности генератор белого шума создать невозможно, ибо он должен обладать бесконечно большой мощностью и генерировать любые частоты. Однако можно осуществить достаточно близкое приближение к такому генератору, обеспечив генерирование белого шума в определенных диапазонах частот. Одной из точек зрения относительно сигнала шума является его представление в виде ряда дискретных случайных чисел. Эти числа могут быть распределены с равными промежутками времени. Исходя из этого, мы можем рассматривать непрерывный сигнал шума как кривую, соединяющую эти величины (рис. С-3). Форма кривой, изображенной на рис. С-3, является хорошим приближением к белому шуму вплоть до области частот, периоды которых вдвое больше интервала между дискретными импульсами шума. Другими словами, самая высокая частота, которую следует отразить в кривой, соединяющей серию случайных значений, равномерно распределенных во времени, составляет половину той частоты, с которой появляются сами случайные импульсы (данные).

Рис. С-3. Равномерно расположенные случайные числа и непрерывная кривая шума.

Ряд равномерно распределенных случайных чисел можно легко использовать в качестве источника шума при работе с моделями социальных систем. Но будет ли этот источник отображать обусловленные принятием решений возмущения, которые мы хотим изучить? Здесь возникает та же проблема, что и при выборе других взаимосвязей в модели и ее параметров. Нас интересуют источники шумов, отражающие характер возмущений, которые, как мы считаем, существуют в действительной системе. Произвольный выбор ряда случайных чисел не дает уверенности в том, что данный метод удовлетворяет поставленной задаче. Каким должно быть среднее отклонение? Какой должна быть мощность шума в зависимости от распределения частот? Как часто следует производить выборочные замеры шумов. Насколько уязвимы наши суждения в отношении состава шумов?

К счастью, те выводы, которые мы собираемся получить на основе изучения моделей, не очень чувствительны к различным категориям используемых сигналов шума. Однако следует обратить внимание на некоторые общие положения и рекомендации.

Сигнал шума, представленный в виде ряда случайных чисел, как это изображено на рис. С-3, близок к полученному от источника белого шума при частотах, меньших частоты импульсов. Такой сигнал имеет одинаковую мощность шума при бесконечно малом приращении частоты, но не на октаву. Зрительно наиболее наглядной является форма кривой, описывающей величину мощности в расчете на октаву. Из рассмотрения рис. С-3 мы можем заметить, что мощность шума преобладает при частотах, равных половине частоты импульсов. Мы не видим или не ощущаем низкочастотных составляющих, так как они очень незначительны в единицах мощности на октаву.

Сигнал шума нельзя выбирать как произвольный ряд случайных чисел, поскольку эта процедура позволяет произвольно и полно определить всю спектральную плотность, а она может оказаться непригодной для наших целей. В качестве примера рассмотрим переменную, изменяющуюся по закону случайной функции, представляющую, например, фактор погоды в модели экономической системы или товарного рынка. Допустим далее, что оценку модели следует производить ежедневно. Мы могли бы затем выбирать ежедневно случайные числа, характеризующие количество выпавших осадков. Случайный характер этих данных мог бы потребоваться для воспроизведения суточных изменений возможных осадков. Но этого недостаточно. Случайные данные суточных выпадений осадков должны анализироваться с целью выявления недельных, месячных, годовых и более длительных изменений, поскольку выпадение осадков не является чисто случайным, время от времени происходящим явлением, а имеет определенные закономерности, если речь идет о достаточно продолжительных интервалах времени.

В главах 13–15 использовался простой метод управления мощностью шумов: шумы подавались в систему и поддерживались в течение более длительного интервала, чем интервал решения уравнений. В главе 13 (уравнение 13–79) шумы подавались в модель и поддерживались в течение одной недели; а решение уравнений производилось для каждых 0,05 недели. Допустим, что мы попытались воспроизвести случайные недельные изменения продаж в диапазоне 2 к 1 (но не таких больших размеров, как в главе 13) путем добавления групп случайных чисел, взятых по 20 в группе. Изменения, происходящие из часа в час и изо дня в день, могли бы оказаться нереально большими, иногда даже вызывающими аннулирование числа заказов, превышающего располагаемое, с тем чтобы сделать долговременные изменения достаточно большими.

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес