Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.
Основные функции компьютера при моделировании:
• выполнять роль вспомогательного средства для решения задач, решаемых обычными вычислительными средствами, алгоритмами, технологиями;
• выполнять роль средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;
• выполнять роль средства конструирования компьютерных обучающе-моделирующих сред;
• выполнять роль средства моделирования для получения новых знаний;
• выполнять роль «обучения» новых моделей (самообучающиеся модели).
Разновидностью компьютерного моделирования является вычислительный эксперимент. Компьютерное моделированиев частности, вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем.
Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, любой реальный объект или процесс, например, процесс инфляции, и вообще любая Сложная Система. Цели компьютерного моделирования могут быть различными, однако наиболее часто моделирование является, как уже отмечалось ранее, центральной процедурой системного анализа, причем под системным анализом мы далее понимаем совокупность методологических средств, используемых для подготовки и принятия решений экономического, организационного, социального или технического характера.
Компьютерная модель сложной системы должна по возможности отображать все основные факторы и взаимосвязи, характеризующие реальные ситуации, критерии и ограничения. Модель должна быть достаточно универсальной, чтобы по возможности описывать близкие по назначению объекты, и в то же время достаточно простой, чтобы позволить выполнить необходимые исследования с разумными затратами.
Все это говорит о том, что моделирование, рассматриваемое в целом, представляет собой скорее искусство, чем сформировавшуюся науку с самостоятельным набором средств отображения явлений и процессов реального мира.
Процесс исследования поведения какого-либо объекта или системы объектов на компьютере можно разбить на следующие этапы:
• построение содержательной модели;
• построение математической модели;
• построение информационной модели и алгоритма;
• кодирование алгоритма на языке программирования;
• компьютерный эксперимент.
Рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью.
Моделирование занимает центральное место в исследовании объекта, процесса, явления. Оно позволяет обоснованно принимать решение: как совершенствовать объекты (процессы), надо ли создавать новые, как изменять процессы управления и, в конечном итоге, как менять окружающий мир в лучшую сторону.
Прежде чем браться за какую-либо работу, нужно четко представить себе отправной и конечный пункты деятельности, а также примерные ее этапы. То же можно сказать о моделировании.
Отправной пункт здесь – прототип. Им может быть существующий или проектируемый объект либо процесс.
Конечный этап – принятие решения. На этом этапе мы либо создаем новый объект (процесс), модель которого мы исследовали, либо улучшаем существующий, либо получаем о нем дополнительную информацию.
Рассмотрим процесс решения задачи на компьютере на следующем примере: изучим полет ядра, вытолкнутого легкоатлетом. Построим содержательную модель, в которой рассмотрим движение ядра в поле тяготения Земли. В этой модели рассматриваются только те параметры, которые характеризуют движение ядра (скорость и координаты), и отвлекаемся от других параметров (температура ядра, его цвет и т. д.).
Теперь построим математическую модель, которая основана на некоторых упрощениях, и это делает этап построения математической модели весьма ответственным, ведь неправильно выбранная модель приведет к неверным результатам.
Существующая физическая система описывается с помощью упрощенной математической модели. Ядро является материальной точкой, сопротивлением воздуха, скоростью ветра и параметрами спортсмена пренебрегаем, ускорение свободного падения считаем постоянным g= 9,8 м/с2. Ядро выталкивается спортсменом со скоростью V под углом к горизонту.
Математическая модель описывает объект моделирования с помощью уравнений.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии