Другая, не менее трагическая проблема здоровья человека, связанная с нарушением работы желез внутренней секреции, – выраженное замедление роста детей, приводящее к появлению так называемых лилипутов, карликов. Это заболевание вызвано недостаточной секрецией гормона роста – соматотропина, который вырабатывается гипофизом (железой, расположенной в нижней части мозга). До середины 80-х гг. XX в. эту болезнь пытались лечить путем введения в кровь пациентов препаратов гормона роста, выделенных из гипофиза умерших людей. Нет смысла объяснять, насколько сложно получить необходимое для терапии количество такого гормона. Помимо чисто технических (в гипофизе содержится очень небольшое количество гормона), финансовых (препарат получается немыслимо дорогим), этических и прочих проблем, имеется риск переноса пациентам опаснейших заболеваний, например, хорошо известного синдрома Кройцфельда – Якоби – коровьего бешенства. Для достижения положительного результата лечения соматотропин вводят внутримышечно три раза в неделю в дозах порядка 6—10 мг на килограмм веса пациента с возраста 4–5 лет до половой зрелости и даже далее. Из одного трупа можно получить лишь 4–6 мг препарата. Поэтому даже разработанные на государственном уровне специальные программы по производству соматотропина в таких странах, как США, Великобритания, Франция, не могли полностью удовлетворить спрос на этот препарат. Так, в США в 70—80-е гг. прошлого века ежегодно выделяли гипофиз у 60 000 трупов. Полученного соматотропина хватало для адекватного лечения лишь 1500 детей в год.
Ген, кодирующий образование гормона роста человека, был синтезирован искусственно и встроен в генетический материал E.coli подобно гену инсулина. В настоящее время проблема производства высококачественного, безопасного для здоровья пациентов соматотропина в необходимых количествах и при минимальных затратах полностью решена. Более того, с помощью технологии рекомбинантных ДНК получены штаммы микроорганизмов, способные синтезировать и другие факторы роста человеческого организма. Для целей сельского хозяйства большое значение имела организация производства гормона роста крупного рогатого скота (впервые – американской фирмой «Монсанто»). Его применение позволяет значительно (до 15 % и более) повысить удойность коров. Сам ген, кодирующий образование соматотропина, пытаются использовать в генетической инженерии животных для выведения пород, способных ускоренно расти. Так, получены обнадеживающие результаты на рыбах. Лососи с встроенным геном гормона роста способны достигать потребительских размеров за один год вместо двух в отличие от обычных рыб.
Для производства трансгенных медицинских препаратов в настоящее время используют не только специальным образом модифицированные микроорганизмы, но и культуры животных клеток. Так, биосинтез рекомбинантного фактора VIII человеческой крови позволяет эффективно решать проблему лечения больных гемофилией (пониженная свертываемость крови). До этого фактор VIII выделяли из крови доноров, что связано с риском заражения пациентов вирусными инфекциями типа гепатита. Производство трансгенного эритропоэтина (гормона, стимулирующего образование красных кровяных клеток человека) помогает бороться с различными анемиями. Ранее наиболее эффективным методом лечения анемии считалось частое переливание донорской крови, обходившееся очень дорого и также связанное с рисками.
6.3. Достижения генетической инженерии животных
Несмотря на то, что первые трансгенные животные были получены более 20 лет назад, до сих пор на рынке нет ни одного генетически модифицированного животного для использования в хозяйственной деятельности. Это связано с определенными техническими (сложности получения и размножения), финансовыми, а иногда и этическими проблемами. Тем не менее, успехи в генетической инженерии животных очевидны. Разработаны различные методы переноса генов в генетический материал животных и получены трансгенные особи у млекопитающих, низших позвоночных и у беспозвоночных животных. Созданы эффективные технологии клонирования, основанные на замене ядер у оплодотворенных яйцеклеток. Ученые научились не только переносить в генетический материал животных отдельные гены, но и «выключать» или заменять некоторые конкретные гены.