Читаем Ошибки мировой космонавтики полностью

Запущенный к Марсу в 1997 году космический аппарат Pathfinder столкнулся с неожиданной проблемой. В бортовой компьютер аппарата были заранее внесены последовательности команд для решения различных задач. Проблема заключалась в том, что для этих заданий не был четко прописан приоритет их выполнения. В итоге, уже оказавшись на Марсе, космический аппарат не знает, чем ему заняться в первую очередь, и начинает прокрастинировать – совсем как человек. Прокрастинация встречается не только среди людей, но характерна и для животного мира. Если перед живым существом стоит несколько одинаково важных задач, оно невольно стремится отвлечься от них всех и заняться чем-то совершенно посторонним. Конечно, Pathfinder свободой воли не обладал и мог делать только то, что было предписано программой, точнее, несколькими программами, предназначенными для решения разных задач. Получилось так, что аппарату приходилось тратить вычислительные мощности на решение, чем же сейчас заняться, а уже после принятия такого решения и некоторого времени работы по конкретной задаче он «передумывал» и переходил к выполнению другой программы, временно забросив предыдущую. Впоследствии в программный код марсианских аппаратов стали закладывать более четкие и структурированные алгоритмы выполнения работ с различными целями.

Космический аппарат, запущенный в 1998 году США в рамках программы Mars Surveyor Program, состоял из посадочного Mars Polar Lander (MPL), предназначенного для посадки в приполярной области Красной планеты, и орбитального Mars Climate Orbiter (МСО) для изучения марсианской погоды. Эта миссия провалилась полностью.

Mars Polar Lander успешно вошел в марсианскую атмосферу и перешел в режим радиомолчания. Связь должна была возобновиться после посадки, однако сеанс связи перед входом посадочного аппарата в атмосферу оказался последним. Расследование причин аварии показало, что с большой долей вероятности подвели магнитные датчики. При спуске в атмосфере у Mars Polar Lander должны были раскрыться опоры, на которые и производилась бы посадка. Магнитные датчики обязаны были регистрировать вибрации опор при соприкосновении с поверхностью планеты, после чего двигателям мягкой посадки давалась команда на отключение. Только датчики оказались излишне чувствительными и восприняли тряску в процессе спуска и открытия опор как вибрацию от касания поверхности. Точнее, программный код аппарата посчитал, что сигналы от датчиков достаточно продолжительные, что могло означать касание поверхности, в то время как реакция на вибрацию от открытия опор должна была регистрироваться по-другому. Двигатели выключились раньше времени, и посадочный аппарат разбился.

Mars Climate Orbiter был утерян по еще более обидной причине. Особенно досадно, что это не единичный такой случай, и подобную историю вы можете найти в главе «Логика работы и автоматика». Проблема заключалась в несоответствии двух различных систем единиц. В то время как весь остальной цивилизованный мир уже использовал метрическую систему (СИ), в США все еще пользовались собственной системой мер, уходящей корнями в Британскую империю. Один из основных программных файлов для расчета траектории как раз пользовался имперской системой. Выходные данные этой подпрограммы отправлялись в другую, которая, согласно технической документации, должна была пользоваться единицами СИ. Вторая подпрограмма автоматически считала, что полученные ею данные представлены в метрической системе, а на деле это было не так. Отдельные проблемы доставили солнечные батареи аппарата. Они располагались асимметрично относительно «тела» MCO, из-за чего в течение девятимесячного путешествия к Марсу аппарат дополнительно разворачивало. Давление света на большую по площади часть солнечных панелей придавало аппарату добавочный угловой момент, который приходилось компенсировать. Инженеры знали о вероятности этого, но не предполагали, насколько часто MCO будет разворачиваться на такой угол, который придется корректировать двигателями. Подобные события происходили в десять раз чаще, чем предполагалось. Опять же, данные об угловом моменте выдавались с использованием имперской системы единиц, а ПО, работавшее с ними далее, считало их метрическими. Это потихоньку накапливало ошибку в траектории. В итоге МСО оказался на 170 км ближе к Марсу, чем предполагала программа полета, и в какой-то момент перестал выходить на связь – он либо распался во время падения в марсианской атмосфере, либо разбился о поверхность планеты.

Лишь в 2007 году NASA от греха подальше окончательно переходит на обязательное использование метрической системы единиц при разработке космических аппаратов и программного обеспечения для них. К слову говоря, к использованию СИ во многих других сферах жизни в США пока так и не пришли.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука