Далее следует так называемая
Наконец, при рассмотрении моего примера с котами надо учитывать еще и такой фактор, как сама по себе наша гипотеза, и это называется
Формулировка теоремы Байеса предполагает также, что данные, которые мы получаем, должны быть точными, что не будет никаких ложноположительных и ложноотрицательных результатов. Поэтому я в ходе своего исследования кошек предполагаю, что если я беру кота и определяю, что он чеширский, так и есть. Это очень важная оговорка. Например, в мире медицины ложноположительных и ложноотрицательных результатов очень много. В таких случаях формулу Байеса приходится немного подправить, чтобы учесть вероятность неверного диагноза и ошибок при анализах. Если вы пытаетесь оценить вероятность той или иной болезни или даже эпидемической угрозы, главное – точность данных и «априори», на которые вы опираетесь.
Итак, теорема Байеса позволяет нам оценить отношения между тем, что мы можем наблюдать и измерять, и нашими гипотезами или математическими моделями. В принципе, она должна позволять нам приписывать абсолютную вероятность – уверенность, – что наша гипотеза представляет собой точное описание природного феномена. Но тут возникают кое-какие досадные осложнения, и иногда результаты подобных вычислений сильно нас огорчают. Не исключено, что мы не знаем, что считать «априори» и вообще верна наша гипотеза хотя бы приблизительно. И измерения бывают несовершенными из-за случайной выборки или непредвиденных погрешностей – и в моем примере так и есть, поскольку чеширских котов в природе не существует. Поэтому вероятность (то есть мера уверенности), которую мы получаем, оказывается очень маленькой и не помогает нам принять решение.
К счастью, теорема Байеса куда мощнее. Она позволяет обойти эти очевидные препятствия при помощи красивого приема, который ученые часто применяют в повседневной работе – и когда гоняются за котами, и когда оценивают структуру мироздания. Дело в том, что абсолютные значения вероятностей нас обычно не очень интересуют. Нас интересует, какая модель или гипотеза «лучше», то есть вероятнее, прочих. Тогда мы для начала предполагаем, что все гипотезы могут оказаться верными с одинаковой вероятностью. На самом деле главное – разобраться, какая гипотеза лучше всего соответствует нашим данным, какая победит. Конечно, может оказаться, что все они ошибочны, но нам просто хочется узнать, какая из них ошибочна меньше прочих. Для этого нам нужно перевернуть формулу Байеса. В конце концов мы оценим вероятность или уверенность, что наши измерения могут объясняться той или иной гипотезой (по сравнению с остальными). Этот простой прием, как выясняется, – необычайно мощный научный инструмент.
Чтобы применить его к любопытному случаю с чеширскими котами, я могу протестировать разные методы выявления чеширских котов – например, взвешивание или проверка, умеют ли они улыбаться. Если 20 % котов и в самом деле чеширские, то результаты любых методов, и точных, и не очень, дадут примерно одни и те же результаты с разными относительными вероятностями. Подход Байеса позволяет мне сочетать их все и таким образом измерить общую уверенность в своей гипотезе по сравнению с альтернативными вариантами.
А вдруг никакие методы выявления не дадут похожих результатов, и общая уверенность у меня окажется низкой? В таком случае мне придется задуматься о том, что либо неверны какие-то подробности моей изначальной гипотезы, либо чеширских котов не бывает.