Если бы я мог каждый раз каким-то образом наносить на карту трехмерную траекторию мяча и бросил бы мяч тысячу раз, у вас получился бы толстый пучок нарисованных в пространстве изогнутых линий, похожих на проволоку. По большей части эти линии проходили бы кучно, однако по сторонам торчало бы несколько отдельных «прутьев» – они образовались бы в тех случаях, когда мяч летел более хаотично и сначала отскакивал от какой-нибудь невидимой кочки, а потом уже закатывался в траву. Если изучать только отклоняющиеся траектории и задаваться вопросом, что происходит с мячом потом, после того, как он в первый раз отскочил от земли, можно затем отобрать такие сценарии будущего, в которых мяч ожидают более интересные события.
Рис. 10. Бросаем мяч в поле.
Точно так же можно поступать с траекториями будущего в динамике планетной системы. Через несколько миллионов лет мы сможем отбирать те варианты сценариев, в которых орбиты планет будут обладать более экстремальными качествами, с большей вероятностью подтолкнут небесные тела слишком близко друг к другу и таким образом доведут их до беды, вместо того чтобы разнести подальше. Возможно, это будет увеличение эллиптичности орбиты и разницы между ближайшей и самой удаленной точкой орбиты. А может быть, дело в ориентации эллипсов, отчего небесные тела опять же окажутся ближе друг к другу. Мы можем собрать коллекцию подобных сценариев[124], а потом посмотреть, что произойдет с разными их вариантами в ближайшие несколько миллионов лет, и повторить процесс несколько раз, чтобы отсеять менее интересные варианты. Прогнозировать какой-то конкретный вариант развития событий через четыре-пять миллионов лет мы по-прежнему не способны, однако вправе задаться вопросом, как они в принципе могут развиваться, и до определенной степени разберемся, насколько вероятны или невероятны те или иные сценарии.
На подобные вопросы пытались ответить Константин Батыгин и Грег Лафлин[125] из Калифорнийского университета в Санта-Крус. При помощи компьютерного моделирования гравитационного взаимодействия планет они экспериментировали с отдаленным будущим нашей Солнечной системы и пробились на 20 миллиардов лет вперед, во времена, когда Солнце уже погибнет.
Оказывается, интересные события начинаются гораздо раньше – можно и не заглядывать так далеко. Планеты внешнего края Солнечной системы – Юпитер, Сатурн, Уран и Нептун – имеют хорошие шансы остаться на устойчивых орбитах и через ближайшие несколько миллиардов лет, а вот с внутренними планетами будет совсем иная история. По одному возможному сценарию Меркурий примерно через 1,26 миллиарда лет упадет на Солнце, поскольку его орбита исказится и разладится из-за взаимодействия с другими планетами. А есть и другой вариант – пройдет каких-то 862 миллиона лет, и Меркурий столкнется с Венерой. Еще до этого колебания Меркурия на орбите приведут к тому, что планету Марс вообще вышвырнет из Солнечной системы, и он будет на веки вечные обречен на межзвездные странствия.
Рис. 11. Вероятные сценарии будущего.
Во всех этих случаях будущее орбиты Земли тоже окажется затронуто, ее орбита примет новую конфигурацию – и это, скорее всего, приведет к полной катастрофе. Подобные эксперименты наряду с основными результатами, которые получили Ласкар и его сотрудники, выявили, что нас ждет целый ряд крайне непривлекательных вариантов развития событий. Через несколько миллиардов лет планеты, которые раньше были от нас далеко, например, Венера и Марс, окажутся вершителями нашей судьбы – столкнутся с Землей, и это приведет к гибели нашего мира, каким мы его знаем.