Читаем Ориентировка по звездам полностью

Через четыре месяца, 6 августа 1961 г., мир облетела весть еще об одном беспримерном подвиге советского народа. Космический корабль «Восток-2», управляемый гражданином Советского Союза майором Германом Степановичем Титовым, совершил более 17 оборотов вокруг Земли и, пробыв около 25 ч в космическом полете, благополучно приземлился в заданном районе.

Беспримерная победа человека над силами природы, величайшее завоевание науки и техники, торжество человеческого разума, войдет в века. Теперь уже недалек тот день, когда космические корабли полетят с человеком на борту к другим планетам, в другие миры. Путь к ним открыт. Началась новая эра завоевания космоса человеком.

Вероятно, полеты будут совершены сначала на ближайшие к нам небесные тела — Луну и планеты Марс и Венеру.

Эти небесные тела в значительной мере изучены, но многое в них непонятно и загадочно. Происхождение кольцевых гор и пылеобразной поверхности Луны, полярных шапок и спутников Марса, слоя облаков, окружающих Венеру, и множество других явлений объясняются пока только научными гипотезами, подлежащими практической проверке. Особенно интересен полет на Марс, где предполагается наличие жизни. Расстояние до этих небесных тел сравнительно невелико: минимальное расстояние до Луны 382 200 км, до Венеры — 40 000 000 км, до Марса — 56 000 000 км. Для космического корабля, летящего с минимальной начальной космической скоростью, продолжительность полета будет составлять: до Луны — 5 суток, до Венеры— 146, до Марса — 259 суток. Укажем для сравнения, что для полета на Плутон понадобится 30—40 лет.

Маршруты космических полетов рассчитываются так, чтобы движение по космическим траекториям после освобождения от силы притяжения Земли происходило под действием силы притяжения Солнца по эллиптической орбите, без работы двигателя и, следовательно, без затраты запасов энергии, имеющихся на корабле. Энергия корабля будет тратиться только для выхода на орбиту, кратковременного маневра на орбите и выхода на траекторию, обеспечивающую посадку на планету.

При выборе траектории полета космического корабля необходимо будет учитывать не только его энергетические возможности, но и ряд других важных факторов. Например, траектория полета не должна проходить вблизи Солнца, пересекать орбиты метеорных потоков, проходить в зонах с недопустимой величиной космической радиации.

Рис. 43. Поверхности положения: а — сфера; б — циклида, в — конус

Момент старта космического корабля должен быть рассчитан так, чтобы пересечение его траектории с орбитой планеты назначения произошло тогда, когда в расчетной точке встречи будут находиться и корабль и планета назначения,

Для контроля движения корабля по заданной орбите, маневра и направления орбиты его движения, обеспечения перехода в расчетной точке на траекторию для последующей посадки на небесное тело необходимо знать свое положение в пространстве, т. е. ориентироваться.

Какой же характер ориентировки будет у космонавтов? На каких принципах будет основано определение своего местоположения в космическом полете? Оказывается, и при полете в космическом пространстве астрономическая навигация может служить одним из основных средств определения местоположения летательного аппарата.

Применение автоматических фотоследящих и радиолокационных систем для наблюдения за небесными светилами позволит с достаточной точностью определить местоположение корабля в космическом пространстве. Благодаря возможности заранее и точно вычислить положение небесных светил и автоматически измерить угловые величины между ними, а также угловые величины диаметров Солнца и планет или расстояния до их центров астрономический ориентатор автоматически может выдать координаты космического корабля.

Принцип межпланетной навигации основан на использовании поверхностей положения (геометрических мест точек вероятного местоположения) космического корабля относительно каких-то небесных светил.

Для определения координат космического корабля необходимы как минимум три поверхности положения: две из них в пересечении дают линию положения, а пересечение этой линии с третьей поверхностью дает две точки, одна из которых соответствует местоположению космического корабля. Вопрос о том, в какой из них находится корабль, решается просто, так как всегда известно его приближенное местоположение.

Поверхностями положения могут быть:

1. Поверхность равных диаметров планеты или Солнца и равных расстояний до центра одного из этих светил. Она получается путем измерения углового размера видимого диаметра или расстояния до центра какого-либо из этих небесных тел. По форме это сферическая (шаровая) поверхность (рис. 43, а).

2. Поверхность равных углов между направлениями на центры двух небесных тел солнечной системы. Эта поверхность представляет собой циклиду, получаемую вращением дуги окружности вокруг оси, соединяющей центры небесных тел (рис. 43, б).

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука