Читаем Операционная система UNIX полностью

Планирование процессов в UNIX основано на приоритете процесса. Планировщик всегда выбирает процесс с наивысшим приоритетом. Приоритет процесса не является фиксированным и динамически изменяется системой в зависимости от использования вычислительных ресурсов, времени ожидания запуска и текущего состояния процесса. Если процесс готов к запуску и имеет наивысший приоритет, планировщик приостановит выполнение текущего процесса (с более низким приоритетом), даже если последний не "выработал" свой временной квант.

Традиционно ядро UNIX является "непрерываемым" (nonpreemptive). Это означает, что процесс, находящийся в режиме ядра (в результате системного вызова или прерывания) и выполняющий системные инструкции, может быть прерван системой, а вычислительные ресурсы переданы другому, более высокоприоритетному процессу. В этом состоянии выполняющийся процесс может освободить процессор "по собственному в результате недоступности какого-либо ресурса перейдя в состояние сна. В противном случае система может прервать выполнение процесса только при переходе из режима ядра в режим задачи. Такой подход значительно упрощает решение задач синхронизации и поддержания целостности структур данных ядра.

Каждый процесс имеет два атрибута приоритета: текущий приоритет, на основании которого происходит планирование, и заказанный относительный приоритет, называемый nice number (или просто nice), который задается при порождении процесса и влияет на текущий приоритет.

Текущий приоритет варьируется в диапазоне от 0 (низкий приоритет) до 127 (наивысший приоритет). Процессы, выполняющиеся в режиме задачи, имеют более низкий приоритет, чем в режиме ядра. Для режима задачи приоритет меняется в диапазоне 0–65, для режима ядра — 66–95 (системный диапазон).

Процессы, приоритеты которых лежат в диапазоне 96–127, являются процессами с фиксированным приоритетом, не изменяемым операционной системой, и предназначены для поддержки приложений реального времени[35].

Процессу, ожидающему недоступного в данный момент ресурса, система определяет значение приоритета сна, выбираемое ядром из диапазона системных приоритетов и связанное с событием, вызвавшее это состояние. В табл. 3.3 приведены значения приоритетов сна для систем 4.3BSD UNIX и SCO UNIX (OpenServer 5.0). Заметим, что направление роста значений приоритета для этих систем различно — в BSD UNIX большему значению соответствует более низкий приоритет.

Таблица 3.3. Системные приоритеты сна

СобытиеПриоритет 4.3BSD UNIXПриоритет SCO UNIX
Ожидание загрузки в память сегмента/страницы (свопинг/страничное замещение)095
Ожидание индексного дескриптора1088
Ожидание ввода/вывода2081
Ожидание буфера3080
Ожидание терминального ввода75
Ожидание терминального вывода74
Ожидание завершения выполнения73
Ожидание события — низкоприоритетное состояние сна4066

Когда процесс пробуждается, ядро устанавливает значение текущего приоритета процесса равным приоритету сна. Поскольку приоритет такого процесса находится в системном диапазоне и выше, чем приоритет режима задачи, вероятность предоставления процессу вычислительных ресурсов весьма велика. Такой подход позволяет, в частности, быстро завершить системный вызов, выполнение которого, в свою очередь, может блокировать некоторые системные ресурсы.

После завершения системного вызова перед возвращением в режим задачи ядро восстанавливает приоритет режима задачи, сохраненный перед выполнением системного вызова. Это может привести к понижению приоритета, что, в свою очередь, вызовет переключение контекста.

Текущий приоритет процесса в режиме задачи p_priuser зависит от двух факторов: значения nice number и степени использования вычислительных ресурсов p_cpu:

p_priuser = a*p_nice - b*p_cpu,

где p_nice — постоянная составляющая, зависящая от параметра nice.[36]

Задача планировщика разделения времени — справедливо распределить вычислительный ресурс между конкурирующими процессами. Для принятия решения о выборе следующего запускаемого процесса планировщику необходима информация об использовании процессора. Эта составляющая приоритета уменьшается обработчиком прерываний таймера каждый тик. Таким образом, пока процесс выполняется в режиме задачи, его текущий приоритет линейно уменьшается.

Каждую секунду ядро пересчитывает текущие приоритеты процессов, готовых к запуску (приоритеты которых меньше 65), последовательно увеличивая их.[37] Это перемещает процессы в более приоритетные очереди и повышает вероятность их последующего запуска.

Например, UNIX версии SVR3, использует следующую формулу:

p_cpu = p_cpu/2

Перейти на страницу:

Похожие книги

Все жанры