Планирование процессов в UNIX основано на
Традиционно ядро UNIX является "непрерываемым" (nonpreemptive). Это означает, что процесс, находящийся в режиме ядра (в результате системного вызова или прерывания) и выполняющий системные инструкции, может быть прерван системой, а вычислительные ресурсы переданы другому, более высокоприоритетному процессу. В этом состоянии выполняющийся процесс может освободить процессор "по собственному в результате недоступности какого-либо ресурса перейдя в состояние сна. В противном случае система может прервать выполнение процесса только при переходе из режима ядра в режим задачи. Такой подход значительно упрощает решение задач синхронизации и поддержания целостности структур данных ядра.
Каждый процесс имеет два атрибута приоритета:
Текущий приоритет варьируется в диапазоне от 0 (низкий приоритет) до 127 (наивысший приоритет). Процессы, выполняющиеся в режиме задачи, имеют более низкий приоритет, чем в режиме ядра. Для режима задачи приоритет меняется в диапазоне 0–65, для режима ядра — 66–95 (системный диапазон).
Процессы, приоритеты которых лежат в диапазоне 96–127, являются процессами с фиксированным приоритетом, не изменяемым операционной системой, и предназначены для поддержки приложений реального времени[35].
Процессу, ожидающему недоступного в данный момент ресурса, система определяет значение
Таблица 3.3. Системные приоритеты сна
Событие | Приоритет 4.3BSD UNIX | Приоритет SCO UNIX |
---|---|---|
Ожидание загрузки в память сегмента/страницы (свопинг/страничное замещение) | 0 | 95 |
Ожидание индексного дескриптора | 10 | 88 |
Ожидание ввода/вывода | 20 | 81 |
Ожидание буфера | 30 | 80 |
Ожидание терминального ввода | 75 | |
Ожидание терминального вывода | 74 | |
Ожидание завершения выполнения | 73 | |
Ожидание события — низкоприоритетное состояние сна | 40 | 66 |
Когда процесс пробуждается, ядро устанавливает значение текущего приоритета процесса равным приоритету сна. Поскольку приоритет такого процесса находится в системном диапазоне и выше, чем приоритет режима задачи, вероятность предоставления процессу вычислительных ресурсов весьма велика. Такой подход позволяет, в частности, быстро завершить системный вызов, выполнение которого, в свою очередь, может блокировать некоторые системные ресурсы.
После завершения системного вызова перед возвращением в режим задачи ядро восстанавливает приоритет режима задачи, сохраненный перед выполнением системного вызова. Это может привести к понижению приоритета, что, в свою очередь, вызовет переключение контекста.
Текущий приоритет процесса в режиме задачи p_priuser
зависит от двух факторов: значения nice number и степени использования вычислительных ресурсов p_cpu
:
p_priuser = a*p_nice - b*p_cpu
,
где p_nice
— постоянная составляющая, зависящая от параметра nice.[36]
Задача планировщика разделения времени — справедливо распределить вычислительный ресурс между конкурирующими процессами. Для принятия решения о выборе следующего запускаемого процесса планировщику необходима информация об использовании процессора. Эта составляющая приоритета уменьшается обработчиком прерываний таймера каждый тик. Таким образом, пока процесс выполняется в режиме задачи, его текущий приоритет линейно уменьшается.
Каждую секунду ядро пересчитывает текущие приоритеты процессов, готовых к запуску (приоритеты которых меньше 65), последовательно увеличивая их.[37] Это перемещает процессы в более приоритетные очереди и повышает вероятность их последующего запуска.
Например, UNIX версии SVR3, использует следующую формулу:
p_cpu = p_cpu/2