Далее он пишет: «В нем (то есть в этом искусстве алгебры. —
В другом месте трактата Хайям возвращается к этой же мысли: «Следует знать, что этот трактат может быть понят только теми, кто хорошо знает книги Евклида «Начала» и «Данные», так же как две книги «Конические сечения» — сочинения Аполлония[9], который работал в Александрии и Лергане».
Во введении Хайям пишет: «Я утверждаю, что искусство алгебры и алмукабалы есть научное искусство, предмет которого составляют абсолютное число и измеримые величины, являющиеся неизвестными, но отмеченные в какой-нибудь известной вещи, по которой их можно определить. Эта вещь есть или количество, или отношение…» Таким образом, предмет алгебры — это неизвестная величина, дискретная (ибо «абсолютное число» означает число натуральное) или же непрерывная (измеримыми величинами Хайям называет линии, поверхности, тела и время). «Отнесение» неизвестных величин к известным есть составление уравнения.
Задачей алгебры, подчеркивает Омар, является определение как числовых, так и геометрических неизвестных. Здесь Хайям отмечает, что математики исламского мира того времени интенсивно занимались поисками числового решения кубического уравнения. О различных видах уравнений третьей степени он пишет: «Доказательство этих видов в том случае, когда предмет задачи есть абсолютное число, невозможно ни для них, ни для кого из тех, кто владеет этим искусством. Может быть, кто-нибудь из тех, кто придет после нас, узнает это для случая, когда имеется не только три первые степени, а именно число, вещь и квадрат». Такое решение кубического уравнения было найдено только в начале XVI века, через четыреста лет после смерти Хайяма.
Далее Омар Хайям производит классификацию уравнений первых трех степеней. Всего он выделяет двадцать пять форм, из них четырнадцать кубических уравнений, не сводящихся к квадратным или линейным делением на неизвестную или ее квадрат. Значение классификации в том, что применительно к каждой форме подбирается соответствующее построение.
Хайям впервые в истории математики заявляет, что уравнения третьей степени, вообще говоря, не решаются при помощи циркуля и линейки. «Доказательство этих видов может быть произведено только при помощи свойств конических сечений». В 1637 году с подобным утверждением вновь выступил Рене Декарт, и только двести лет спустя, в 1837 году, это было строго доказано П. Д. Венцелем.
Основным в математическом трактате Омара Хайяма является третий раздел, где дано построение корней каждой из четырнадцати форм уравнений третьей степени при помощи надлежаще подобранных конических сечений. Причем сам подбор таких сечений произведен вполне систематически.
Работы Омара Хайяма по алгебре, скорее всего, были известны мусульманским ученым того времени, но они оказали незначительное воздействие на развитие математики в Европе. Там, например, результаты его математических исследований стали известны, по-видимому, тогда, когда они были уже превзойдены европейцами. Алгебраический трактат Хайяма впервые упоминается в Европе в 1742 году в предисловии к учебнику дифференциального исчисления Ж. Меермана. По этому поводу Ж. Э. Монтюкла в своей известной «Истории математики», заметив, что арабы пошли дальше квадратных уравнений, говорит, что в Лейдене имеется арабская рукопись, озаглавленная «Алгебра кубических уравнений», или «Решение телесных задач», и что автором ее является Омар бен-Ибрахим. «Весьма жаль, — добавляет Монтюкла, — что никто из знающих арабский не имеет вкуса
Профессор А. П. Юшкевич писал: «Можно жалеть, что книга Хайяма осталась неизвестной европейской математике XV–XVI веков. Насколько раньше поставлен был бы вопрос о числовом решении кубического уравнения, насколько облегчена была бы работа творцов новой высшей алгебры. События сложились по-иному, и европейским ученым пришлось немало потрудиться, чтобы заново пройти тот путь, начало которому проложил задолго до них великий восточный поэт и математик».