Работа Омара Хайяма стала возможной в результате его глубокого и систематического изучения предшествующего этапа развития этой отрасли математики. Он ищет и ставит те сложные проблемы, которые, по его мнению, не были разрешены наукой до него, что подтверждают его собственные высказывания: «Один из поучительных вопросов, необходимый в разделе философии, называемом математикой, это искусство алгебры и алмукабалы, имеющее своей целью определение неизвестных, как числовых, так и измеримых».
Здесь, вероятно, следует напомнить, что и в средние века математика считалась одним из разделов философии. Философские науки делились на теоретические и практические. Теоретические же, в свою очередь, подразделялись на «высшую науку» (то есть философию в нынешнем смысле), «среднюю науку» — математику и «низшую науку» — физику. В данном случае Хайям называет «измеримой величиной» непрерывную геометрическую величину, то есть линию, поверхность и тело в отличие от дискретного количества — натурального числа.
Далее он пишет: «В нем (то есть в этом искусстве алгебры. —
В другом месте трактата Хайям возвращается к этой же мысли, подчеркивая преемственность своей работы от исследований Евклида и Аполлона: «Следует знать, что этот трактат может быть понят только теми, кто хорошо знает книги Евклида „Начала“ и „Данные“, так же как две книги сочинения Аполлония[8] «Конические сечения».
Во введении Хайям пишет: «Я утверждаю, что искусство алгебры и алмукабалы есть научное искусство, предмет которого составляют абсолютное число и измеримые величины, являющиеся неизвестными…, но отмеченные в какой-нибудь известной вещи, по которой их можно определить. Эта вещь есть или количество, или отношение…» Таким образом, предмет алгебры — это неизвестная величина, дискретная (ибо «абсолютное число» означает число натуральное) или же непрерывная (измеримыми величинами Хайям называет линии, поверхности, тела и время). «Отнесение» неизвестных величин к известным есть составление уравнения.
Задачей алгебры, подчеркивает Омар, является определение как числовых, так и геометрических неизвестных. Здесь Хайям отмечает, что математики стран ислама того времени интенсивно занимались поисками числового решения кубического уравнения. О различных видах уравнений третьей степени он пишет: «Доказательство этих видов в том случае, когда предмет задачи есть абсолютное число, невозможно ни для них, ни для кого из тех, кто владеет этим искусством. Может быть, кто-нибудь из тех, кто придет после нас, узнает это для случая, когда имеется не только три первые степени, а именно число, вещь и квадрат». Такое решение кубического уравнения было найдено только в начале XVI века, через 400 лет после смерти Хайяма.
Далее Омар Хайям производит классификацию уравнений первых трех степеней. Всего он выделяет 25 форм, из них 14 кубических уравнений, не сводящихся к квадратным или линейным делением на неизвестную или ее квадрат. Значение классификации в том, что применительно к каждой форме подбирается соответствующее построение.
Хайям, впервые в истории математики, заявляет, что уравнения третьей степени, вообще говоря, не решаются при помощи циркуля и линейки. «Доказательство этих видов может быть произведено только при помощи свойств конических сечений». В 1637 году с подобным утверждением вновь выступил Рене Декарт, и только двести лет спустя, в 1837 году, это было строго доказано П.Л. Веицелем.
Основным является третий раздел трактата, где дано построение корней каждой из 14 форм уравнений третьей степени при помощи надлежаще подобранных конических сечений. При этом подбор таких сечений произведен вполне систематически.