Читаем Одураченные случайностью полностью

При упоминании о Монте-Карло в памяти всплывает образ загорелого учтивого человека, этакого европлейбоя, входящего в казино с ароматом средиземноморского бриза. Он ― способный лыжник и теннисист, не посрамит себя в шахматах и бридже, одет в выглаженный итальянский костюм ручной работы и управляет серым спортивным автомобилем. Главное, он способен рассуждать о мирском и реальной жизни, а журналист в состоянии донести его взгляды до публики. В казино он проницательно считает карты, определяя шансы, и держит пари пока его мозг вычисляет оптимальный размер ставки. Его можно было бы принять за более умного потерянного брата Джеймса Бонда.

Теперь, когда я думаю о «математике Монте-Карло», я представляю счастливую комбинацию двух факторов: реализм без мелочности человека из Монте-Карло и интуицию математика, но без чрезмерной абстракции. На самом деле, эта отрасль математики имеет огромное практическое значение и не столь суха, как обычно думается. Меня такая математика захватила в ту минуту, когда я стал трейдером. Именно она формировала мое мышление при решении большинства вопросов, связанных со случайностью. Множество примеров, используемых в книге, было создано при помощи моего генератора Монте-Карло, о котором я расскажу в этой главе. Однако в большей степени это ― способ мышления, а не метод вычисления. Ведь математика ― инструмент, даже скорее мышления, чем вычисления.

Инструменты

Понятие альтернативных историй, о которых шла речь в предыдущей главе, можно значительно расширить и подвергнуть технической обработке. Последнее приведет нас к созданию инструментов для игры с вероятностью, используемых в моей профессии (я обозначу их позже). Одним словом, методы Монте-Карло заключаются в создании искусственной истории, используя следующие концепции.

Во-первых, траектория выборки [9] . Невидимые истории имеют научное название альтернативные выборочные траектории, оно заимствовано из области вероятностной математики, называемой стохастическим процессом. Понятие траектории, в противоположность результату, указывает на то, что имеет место не простой анализ сценария в стиле MBA, а экспертиза последовательности сценариев в какой-то промежуток времени. Мы не просто хотим знать место, где птичка может оказаться завтра ночью, а интересуемся всеми возможными вариантами мест, которые она может посетить за временной интервал. Для нас представляет интерес не только то, сколько будет стоить капитал инвестора, скажем, через год, а скорее количество сердечных приступов, которые могут случиться в течение этого периода. Термин выборочная подчеркивает, что видим только одну реализацию среди множества возможных. Очевидно, выборочная траектория может быть либо детерминированной, либо случайной.

Случайная выборочная траектория, называемая также случайным пробегом, есть математическое название последовательности виртуальных исторических событий, начинающихся с данного момента и заканчивающихся в другой момент, и появление которых соответствует некоторому уровню неуверенности. Однако не следует путать слова случайный и равновероятный (имеющий одинаковую вероятность). Примером случайной выборочной траектории может быть измеряемая ежечасно температура тела вашего кузена во время его болезни тифозной лихорадкой. Случайную выборочную траекторию можно представить как моделирование цены вашей любимой акции, определяемой ежедневно на закрытии рынка в течение, скажем, одного года. Начиная со 100$, цена в одном сценарии может остановиться на 20$, достигнув максимума в 220$. В другом сценарии она может достигнуть уровня 145$, повидав минимум в 10$. Другой пример ― эволюция содержимого вашего кармана в течение одного вечера игры в казино. Вы начинаете игру, имея 1000$, измерения делаете каждые 15 минут. В одной выборочной траектории в полночь Вы получите 2200$, в другой ― едва наскребаете 20$ на такси.

Стохастические процессы описывают динамику событий, разворачивающихся во времени. Стохастический ― это причудливое греческое название случайного. Эта отрасль теории вероятности изучает развитие последовательных случайных событий, которые можно даже назвать математикой истории. Ключ к процессу в том, что он включает в себе время.

Что такое генератор Монте-Карло? Вообразите, что Вы можете смоделировать совершенное колесо рулетки на своем чердаке без помощи плотника. Компьютерные программы могут моделировать что угодно, более того, с их помощью делать лучше и дешевле. Ведь, в частности, колесо рулетки, сделанное плотником, может «любить» какой-либо номер больше, чем другие, из-за возможной неровности в конструкции или полу чердака. Такая неровность называется уклоном.

Перейти на страницу:

Похожие книги

100 лучших игр и упражнений для успешного супружества и счастливого родительства
100 лучших игр и упражнений для успешного супружества и счастливого родительства

Книга известного психолога-консультанта Михаила Кипниса представляет собой сборник психологических игр, упражнений и занимательных текстов, которые помогут выстроить эффективную и увлекательную групповую работу тренерам, педагогам, семейным психологам и консультантам. Описание каждого упражнения включает в себя рекомендации по его применению, необходимые материалы, инструкции участникам, оценку необходимого для его проведения времени и размера группы, вопросы для дискуссии с участниками и выводы, к которым они должны прийти.Супружеские пары, родителей и их детей это пособие обучит открытой и конструктивной коммуникации, установлению эмоционально богатых, доверительных отношений, укрепит партнерство между взрослыми членами семьи и детьми, даст почувствовать радость, ответственность и счастье семейного общения.

Михаил Шаевич Кипнис

Карьера, кадры