Читаем Одна формула и весь мир полностью

Как увязать между собой эти прямо противоположные выводы? Кто ошибся в своих рассуждениях — Клаузиус и Больцман или Лаплас? Почему не кто иной, как Лаплас, труды которого легли в основу современной теории вероятностей, пришел к выводу, что в окружающем нас мире никаких случайностей, по сути дела, и нет, а если мы не знаем заранее всех грядущих событий, то виной тому только отсутствие всеобъемлющего ума?

Не так-то просто найти ответы на эти вопросы. Спор о соотношении случайности и предопределенности происходящих в мире явлений, начатый еще древнегреческими философами, продолжается и в наши дни. (Правда, теперь он ведется на другом философском уровне и на иной естественнонаучной основе.) И все же нам кое-что станет ясным, если мы сопоставим представления об энтропии, заложенные в трудах Рудольфа Клаузиуса и Людвига Больцмана, с теми, которые сформировались ныне под влиянием идей, высказанных нашим современником, американским ученым Клодом Эльвудом Шенноном.

Функция энтропии была введена в науку Р. Клаузиусом в статье, опубликованной в журнале «Физический ежегодник» в 1854 году, хотя в этой статье слово «энтропия» произнесено еще не было. Энтропия вошла в науку инкогнито, в виде очень простой по форме и совершенно неясной по своему физическому содержанию формулы 

Здесь буквой S обозначена функция, вскоре названная Р. Клаузиусом энтропией, буквой Т обозначена абсолютная температура физического тела, а буквой Q — количество сохраняемого этим телом тепла.

Клаузиус термин «энтропия» образовал из греческого корня «тропэ», означающего «превращение», к которому он добавил приставку «эн». Приставкой Клаузиус хотел подчеркнуть родство введенного им в науку понятия с уже общепризнанным в то время понятием энергии. «Обе величины, названные этими словами,— писал Клаузиус,— настолько близки друг к другу по физической значимости, что известное сходство в названиях кажется мне целесообразным».

Корень «тропэ» Клаузиус употребил потому, что с помощью энтропии удалось проанализировать процессы превращения одних форм энергии в другие, в частности превращение тепловой энергии в полезную механическую работу.

Проделанный Клаузиусом анализ навсегда рассеял иллюзии насчет получения полезной работы «задаром». Первый поток хитроумных проектов вечного двигателя проистекал от успехов механики. Авторы подобных проектов пытались перехитрить природу комбинацией из зубчатых и ленточных передач, тяг и штоков, скатывающихся по желобкам шариков, гидравлических приводов и всплывающих поплавков. Но потом обнаруживались не учтенные авторами проектов потери энергии, из-за которых любой «вечный» двигатель раньше или позже был обречен на вечный покой.

Закон сохранения энергии (впоследствии названный первым законом термодинамики) подвел итог всем попыткам перехитрить природу, доказал их несостоятельность и утвердил мнение о том, что черпать энергию «ниоткуда» принципиально нельзя. Так первый закон термодинамики положил конец бесплодным растратам творческой энергии на создание вечных двигателей первого рода.

Второй закон термодинамики — закон возрастания энтропии — отверг возможность создания вечных двигателей второго рода, то есть тепловых машин, производящих работу за счет циркулирующего в них тепла.

— Нет,— утверждал закон энтропии,— тепло не будет циркулировать вечно. Машина может производить работу лишь до тех пор, пока между нагретым телом (источником) и охлажденным телом (холодильником) сохраняется разность температур. Согласно второму закону термодинамики отдаваемое тепло может быть превращено в работу только частично. Другая же его часть тратится на нагревание холодильника и составляет бесполезный отход. Точнее, даже не бесполезный, а вредный, поскольку за счет этой энергии уменьшается разность температур между источником тепла и холодильником. А с уменьшением разности температур снижается эффективность машины, подобно тому как теряется сила водяной мельницы, если какая-нибудь неисправность плотины уменьшает разность уровней вращающей мельничные колеса воды. Но если плотину можно отремонтировать, то «исправлять» тепловую машину бессмысленно: из закона возрастания энтропии вытекает неизбежность уменьшения разности температур. Тепло, безвозмездно отданное холодильнику и не производящее никакой полезной работы,— это «энтропийная плата» за ту полезную энергию, которую мы извлекаем из тепловых машин. Отсюда вторая формулировка второго закона термодинамики: нельзя создать тепловой машины с коэффициентом полезного действия 100 процентов, ибо в такой машине все тепло источника превращалось бы в полезную работу, а холодильнику нечем было бы «платить».

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука