Дело в том, что стоит лишь задуматься о двигателе, и все сразу отходит на задний план. (Впрочем, вероятно, справедлива и «обратная теорема»: «если заинтересоваться проблемой защиты, то можно уже не думать о двигателе».)
Проблема № 1 — проблема горючего.
Любой вид «химического» топлива должен быть отброшен сразу и бесповоротно. Действительно, при скорости 100 тысяч километров в секунду каждый килограмм ракеты имеет кинетическую энергию 5,4 · 1014 килограммометров. За эту энергию нужно «платить». Поэтому, даже если считать, что кпд двигателя равен единице, и пренебречь действием внешних сил, для разгона одного килограмма массы необходимо сжечь столько топлива, чтобы освободилось 5,4 · 1022 эргов[91].
Мерить это число земными масштабами несколько затруднительно. Объемы обычных горючих, необходимые для получения такой энергии, исчисляются десятками, сотнями и тысячами кубических километров. Поэтому источником энергии могут служить только ядерные реакции — ядерное горючее.
На первый взгляд ядерная энергия спасает положение. Действительно, на каждый килограмм разгоняемой массы необходимо «сжечь» — перевести в кванты электромагнитного излучения — только 60 граммов горючего вещества.
Процессы, при которых все реагирующее вещество переходит в излучение, известны. Это реакции аннигиляции элементарных частиц с соответствующими античастицами. Например, при реакции «электрон — позитрон» две реагирующие частицы полностью «сгорают», и вместо них образуются два гамма-кванта.
Однако даже при самом пылком воображении приходится признать, что нет ни малейших надежд на использование таких реакций в технике хотя бы потому, что абсолютно невозможно представить резервуар для горючего антивещества. Античастицы моментально вступят в реакцию со стенками, после чего ракетный корабль с экипажем незамедлительно отправится в «надзвездные» миры.
Можно ли думать, что весьма значительную массу антивещества удастся удержать в ловушке при помощи какого-то сверхсильного электромагнитного поля (в так называемой «магнитной бутылке») таким образом, что горючее не вступит в какой-либо контакт со стенками?
Надеяться можно вообще на все что угодно. Например, в средние века примерно столь же обоснованно полагали, что в обычной (немагнитной) бутылке можно запечатать дьявола.
Впрочем, пока мы летим «только» к созвездию Центавра, скрепя сердце можно примириться с обычным ядерным горючим.
Можно рассчитывать или на уже освоенные реакции распада тяжелых ядер, или же на термоядерные реакции синтеза легких ядер, энергетическую базу будущего. Если иметь в виду такие реальные ядерные топлива, то, чтобы разогнать 1 килограмм массы до скорости 100 тысяч километров в секунду, потребуется всего лишь несколько килограммов ядерного горючего[92], допустим 10 килограммов. Вспоминая, что в процессе путешествия корабль должен минимум два раза набирать такую скорость (при отлете с Земли и при отправлении в обратный путь к Земле) и два раза гасить ее (при подлетах к звезде и к Земле), получаем, что на каждый килограмм полезной массы ракеты необходимо взять как минимум 10 тонн ядерного горючего.
Итак, если полезная масса 105 тонн, стартовая масса ракеты как минимум — 109 тонн. Примерно столько весит металлический астероид средних размеров — объемом в 1/10 кубического километра.
Оценим теперь энергию реактивной струи, необходимой для разгона ракеты с ускорением 1
Если считать, что струя состоит из частиц, имеющих массу покоя, то при разумных скоростях истечения (порядка 100 тысяч
Фотонный двигатель не спасает положения. Мощность фотонной струи, обеспечивающей нужную тягу, — 3 · 1027
На Земле невозможно найти процессы, при которых за секунду выделяется такая энергия. Весь земной шар за одну секунду получает от Солнца примерно в 550 раз меньшую энергию. Нужную мощность можно развить, полностью «сжигая» 1100 килограммов массы за одну секунду, или же, если думать об урановом горючем, примерно 1300 тонн урана.
Иначе говоря, получить эту энергию можно, взорвав около миллиона атомных бомб.
Причем, вспомните, при расчетах все время выбирались наиболее выгодные нам цифры — в частности, взято очень маленькое ускорение. Но полученное число так неправдоподобно огромно, что можно позволить себе широкий купеческий жест — уменьшить его в 100, в 1000, если угодно, в 10 тысяч раз, ибо одинаково невозможно представить ракетный двигатель на ядерном горючем с мощностью в 1027 эргов за секунду или же с мощностью в 1023 эргов за секунду. В обоих случаях вырабатываемая энергия мгновенно испепелит межзвездный корабль.