Читаем Обработка больших данных полностью

MapReduce также отличается простотой программирования. Несмотря на то, что задачи, решаемые с его помощью, могут быть очень сложными, модель программирования MapReduce предлагает простой и интуитивно понятный интерфейс для разработчиков. Им необходимо лишь определить функции Map и Reduce, а вся остальная сложная работа по распределению задач, управлению данными и обработке отказов выполняется фреймворком.

Несмотря на свои многочисленные преимущества, MapReduce имеет и некоторые ограничения. Одним из них является его подход, ориентированный на пакетную обработку данных, что делает его менее подходящим для задач, требующих обработки данных в реальном времени или с низкой задержкой. Хотя этот недостаток можно частично компенсировать использованием дополнительных инструментов, таких как Apache Spark для более быстрой обработки данных, MapReduce остаётся менее гибким для задач, требующих мгновенных откликов.

Ещё одно ограничение связано с тем, что MapReduce требует значительных ресурсов для выполнения этапов Shuffle and Sort, особенно при работе с большими объемами данных, что может приводить к узким местам в производительности.

MapReduce оказал огромное влияние на развитие технологий больших данных, став основой для многих современных фреймворков и систем, включая Apache Hadoop, который сделал MapReduce доступным и популярным инструментом для обработки данных в широком спектре отраслей. Несмотря на появление новых технологий и подходов, MapReduce по-прежнему остаётся важной и востребованной моделью программирования для распределённой обработки данных, особенно для задач, связанных с анализом больших объемов информации.

– YARN (Yet Another Resource Negotiator)

YARN (Yet Another Resource Negotiator) – это система управления ресурсами, которая стала ключевым компонентом второй версии Hadoop (Hadoop 2.x). YARN была разработана для преодоления ограничений первой версии Hadoop, в которой MapReduce одновременно выполнял роли как фреймворка для обработки данных, так и системы управления ресурсами. Введение YARN позволило отделить эти функции, что значительно повысило гибкость и эффективность использования ресурсов в кластерах Hadoop.

YARN состоит из нескольких ключевых компонентов, которые совместно обеспечивают управление ресурсами и координацию выполнения приложений в распределенной среде:

1. ResourceManager (Менеджер ресурсов):

Расположение: Центральный компонент системы YARN, который управляет всеми ресурсами кластера.

Функции: ResourceManager отвечает за распределение ресурсов между различными приложениями. Он получает запросы от приложений на выделение ресурсов, принимает решения о размещении задач на узлах и контролирует состояние кластера. ResourceManager включает в себя два основных модуля: Scheduler и ApplicationManager.

 Scheduler: Этот модуль отвечает за планирование ресурсов, распределяя вычислительные мощности (CPU, память) между приложениями в соответствии с их приоритетами и требованиями. Scheduler действует на основе политики выделения ресурсов, не выполняя самих задач, что позволяет избежать конфликтов и перегрузки кластера.

ApplicationManager: Управляет жизненным циклом приложений, начиная от их инициализации до завершения. Этот модуль координирует запуск и мониторинг всех компонентов приложения на узлах кластера.

2. NodeManager (Менеджер узла):

Расположение: Работает на каждом узле кластера.

 Функции: NodeManager отвечает за управление ресурсами на конкретном узле. Он отслеживает использование ресурсов (памяти, процессора) на узле и управляет контейнерами (containers) – изолированными средами выполнения, в которых запускаются задачи приложения. NodeManager также регулярно отправляет отчёты о состоянии узла и его ресурсах в ResourceManager.

3. ApplicationMaster (Менеджер приложения):

Расположение: Запускается для каждого приложения, работающего на YARN.

Функции: ApplicationMaster управляет выполнением конкретного приложения. Он запрашивает у ResourceManager необходимые ресурсы, распределяет их между задачами приложения, следит за выполнением задач и обрабатывает возможные сбои. Это обеспечивает гибкость и адаптивность выполнения приложений, так как каждый ApplicationMaster может иметь свои собственные стратегии управления задачами и ресурсами.

YARN значительно улучшает масштабируемость, гибкость и эффективность кластера Hadoop благодаря следующим функциям:

1. Разделение управления ресурсами и обработкой данных:

В отличие от первой версии Hadoop, где MapReduce выполнял функции как фреймворка для обработки данных, так и системы управления ресурсами, YARN выделяет управление ресурсами в отдельный слой. Это позволяет запускать на кластере не только задачи MapReduce, но и другие типы приложений (например, Apache Spark, Apache Flink), что делает Hadoop универсальной платформой для работы с большими данными.

2. Поддержка различных типов рабочих нагрузок:

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии