Читаем Об интеллекте полностью

Вы могли бы подумать, «хорошо, но это все еще то же самое лицо, просто смещающееся». В этом есть доля правды, но не так много, как вы думаете. Светочувствительные рецепторы в вашей сетчатке распределены неравномерно. Они плотно сконцентрированы в фовеальной области в центре, и постепенно редеют к периферии. В отличие от этого клетки кортекса распределены равномерно. В результате изображение с сетчатки, отображаемое в первичную визуальную область V1, сильно искажено. Когда ваши глаза фиксируются на носу, а не на глазу того же самого лица, картинка значительно отличается, как если бы ее рассматривали через искажающие линзы, которые постоянно дергаются туда-сюда. Но когда вы видите лицо, оно не кажется вам искаженным, и не кажется прыгающим. Большую часть времени вы даже не осознаете, что паттерны с сетчатки полностью изменяются. Вы видите «просто лицо». (Рисунок 2б показывает этот эффект на примере берегового ландшафта). Это подтверждение загадки инвариантного представления, о котором мы говорили в главе 4. То, что вы воспринимаете — это не то, что видит V1. Как же все таки ваш мозг узнает, что он видит одно и то же лицо, и почему вы не знаете, что поступающая информация изменяющаяся и искаженная?

Рисунок 2а. Как глаза совершают саккады по человеческому лицу.

Рисунок 2б. Искажение, вызванное неравномерным распределением рецепторов по сетчатке.

Если мы поместим электроды в V1 и будем наблюдать, как отвечают отдельные клетки, мы обнаружим, что каждая конкретная клетка возбуждается только в ответ на визуальную информацию от крошечной части сетчатки. Этот эксперимент был проделан много раз и является опорным в исследовании зрения. Каждый нейрон в области V1 имеет так называемое рецептивное поле, которое сильно специфично для каждой мельчайшей части общего поля зрения — то есть, цельного мира перед вашими глазами. Представляется, что клетки в V1 совсем не знают о лицах, машинах, книгах или других значительных объектах, которые вы видите все время; они «знают» о крошечных, с игольное ушко, порциях визуального мира.

Каждая клетка в V1 также настроены на специфические виды поступающих паттернов. Например, конкретная клетка может активно пульсировать, когда она видит линию или край, наклоненный под углом в 30 градусов. Эти края сами по себе имеют небольшое значение. Они могли бы быть частью любого объекта — половицы, стволом отдаленного пальмового дерева, стороной буквы М или одной из почти бесконечного числа возможностей. При каждой новой фиксации, рецептивное поле клетки попадает на новую и совершенно отличную порцию визуального пространства. При некоторых фиксациях клетка будет сильно возбуждаться, на других будет возбуждаться слабо или вообще не будет. Таким образом, каждый раз, когда вы совершаете саккаду, множество клеток в V1 вероятнее всего изменяет свою активность.

Однако, нечто волшебное происходит, если вы помещаете электрод в верхнюю область, показанную на рисунке 1, область IT. Здесь мы обнаруживаем некоторые клетки, которые становятся и остаются активными, когда объект полностью появляется где-нибудь в поле зрения. Например, мы могли бы найти клетки, которые возбуждаются только тогда, когда видно лицо. Эти клетки остаются активными до тех пор, пока ваши глаза видят лицо где-нибудь в поле вашего зрения. Они не включаются и не выключаются при каждой саккаде, как это делают клетки в V1. Рецептивное поле этих клеток в IT покрывает большую часть визуального пространства и настроено на возбуждение, когда видно лицо.

Давайте откроем тайну. Походу охвата четырех кортикальных этапов от сетчатки до IT, клетки изменяются от быстро изменяющихся, пространственно специфичных, распознающих крошечные кусочки ячеек, до постоянно возбужденных, пространственно неспецифичных, распознающих объекты. Клетки в IT говорят нам, что мы видим лицо где-то в поле нашего зрения. Эти клетки, называемые обычно нейронами лица, будут возбуждаться независимо от того, наклонено ли лицо, повернуто ли, или частично загорожено. Это часть инвариантного представления для «лиц».

Написать эти слова кажется так просто. Четыре коротких этапа, и Вуаля, мы узнали лицо. Ни одна компьютерная программа или математическая формула не решает эту задачу с надежностью и общностью, близкой к человеческому мозгу. Но мы знаем, что мозг решает ее за несколько шагов, так что ответ не может быть сложным. Одна из основных целей этой главы объяснить, как получаются нейроны лица, нейроны Билла Клинтона или другие. Мы доберемся до этого, но мы должны охватить сначала много другого.

Взглянем на рисунок 1 по-другому. Вы видите, что информация также течет от высших областей к низшим через сеть обратных связей. Эти связки аксонов, которые идут от областей вроде IT к низшим областям вроде V4, V2 и V1. Более того, обратных связей много, если не больше, чем прямых.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки