Читаем Об интеллекте полностью

Так как же мозг решает сложную задачу за сто шагов, которую параллельный компьютер даже теоретически не может решить за миллион или миллиард операций? Ответ в том, что мозг не «вычисляет» ответ на задачу; он достает ответ из памяти. По существу ответ был сохранен в памяти заранее. Всего несколько шагов требуется, чтоб достать что-то из памяти. Медленные нейроны не только достаточно быстры, чтоб сделать это, но они сами составляют эту память. Весь кортекс — это система памяти. Это совсем не компьютер.

* * *

Позвольте показать на примере различие между вычислением ответа на задачу и использование памяти для решения той же самой задачи. Рассмотрим задачу ловли мяча. Кто-то бросает мяч вам, вы видите, как он движется к вам, и менее чем за секунду вы хватаете его. Это кажется несложным — до тех пор, пока вы не попытаетесь запрограммировать манипулятор робота, чтоб сделать то же самое. Как убедились на своем опыте множество аспирантов, это кажется практически невозможным. Когда инженер или компьютерщик энергично берется за эту задачу, он в первую очередь пытается вычислить полет мяча, чтоб определить, где он будет, когда достигнет манипулятора. Это вычисление требует решения набора уравнений того типа, что изучались вами на физике в институте. Затем, все шарниры манипулятора должны дружно передвинуть манипулятор в необходимое положение. Это требует решение другого набора математических уравнений, более сложного, чем первые. Наконец, эта операция в целом должна быть повторена множество раз, чтобы по мере приближения мяча робот получил наилучшую информацию о положении и траектории мяча. Если робот будет ждать вычисления точного положения прибытия мяча, прежде чем начнет движение, он не успеет поймать его. Он должен начать движение, как только получит малейшую информацию о положении мяча, и постоянно корректировать свое положение по мере приближения мяча. Компьютеру требуются миллионы операций, чтоб решить множество математических уравнений для поимки мяча. И хотя компьютер мог бы быть запрограммирован для решения этой задачи, «правило ста шагов» говорит нам, что мозг решает ее другим способом. Он использует память.

Каким образом вы ловите мяч, используя память? Ваш мозг хранит информацию о мышечных командах, необходимых для поимки мяча (вместе с другими заученными движениями). Когда мяч брошен, происходят три веши. Во-первых, соответствующие воспоминания автоматически вызываются образом мяча. Во-вторых, фактически вспоминается временная последовательность мышечных команд. И в-третьих, полученная информация корректируется по мере ее вспоминания для того, чтоб приспособить к определенному моменту, такому как фактическая траектория мяча и положение вашего тела. Память о том, как поймать мяч, не запрограммирована в вашем мозгу; она запоминается за годы постоянной практики, и сохраняется без вычислений в ваших нейронах.

Вы могли бы подумать, «подождите, каждая попытка поймать мяч слегка отличается. Вы только что сказали, что каждое воспоминание постоянно корректируется, чтоб приспособить к различным вариациям мяча в каждом конкретном броске… Разве это не требует решения тех же самых уравнений, которых мы попытались избежать?». Так может показаться, но природа решила задачу вариации другим, очень простым путем. Как мы увидим позже в этой главе, кортекс создает то, что называется инвариантный образ, который автоматически оперирует с вариациями в мире. В качестве полезной аналогии можно вообразить, что происходит, когда вы садитесь на водяную кровать: подушки и другие люди на кровати внезапно смещаются в новое положение. Кровать не рассчитывает, как высоко должен быть поднят каждый объект; физические свойства воды и пластиковой оболочки матраца автоматически заботятся о корректировке. Как мы увидим в следующей главе, архитектура шестислойного кортекса, мягко говоря, делает нечто подобное с информацией, проходящей через него.

* * *

Таким образом, неокортекс не похож на компьютер, параллельный или какой либо другой. Вместо вычисления ответов на задачи для их решения и формирования поведения неокортекс использует сохраненную информацию. У компьютеров также есть память в виде жесткого диска или чипов памяти; однако у неокортикальной памяти есть четыре атрибута, фундаментально отличающиеся от компьютерной памяти:

• Неокортекс хранит последовательности паттернов.

• Неокортекс вспоминает паттерны автоассоциативно.

• Неокортекс хранит паттерны в инвариантной форме.

• Неокортекс хранит паттерны иерархически.

Мы обсудим первые три различия в этой главе. Я введу концепцию иерархии неокортекса в главе 3. В главе 6 я опишу ее значимость и как она работает.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки