что бездумно складывать и вычитать можно только «неименованные» числа, а именованные – нельзя... Еще один стереотип, причем прямо[197] противоположный. Какой же из них следует применить, «включить в данном случае?
Почему в одном случае надо и можно «складывать» двух мальчиков с двумя вишенками, а в другом – не надо и нельзя? Почему в одном случае они «одно и то же», а именно: единичные чувственно воспринимаемые вещи без дальнейших разъяснении, а в другом – «не одно и то же», разноименные, разнородные (хотя и тоже единичные) вещи?
В самом деле, почему?
Учитель от объяснений воздерживается. Он просто показывает – на наглядных примерах – что в одном случае надо действовать так, а в другом – этак. Тем самым ребенку внушается два готовых абстрактнейших представления о числе и не дается его конкретного понятия, то есть понимания...
Что-то подозрительно похожа описанная дидактика на принципы обучения «уму», высмеянные мудрой народной сказкой.
– «Дурень, а дурень, чем на печке лежать – пошел бы, потерся около людей, ума набрался!»
Послушный и прилежный дурень увидел мужиков, что таскали мешки с пшеницей, и ну тереться то об одного, то о другого...
– «Дурень ты, дурень, тут надо было сказать – таскать вам, не перетаскать!» – Дурень послушно следует и этому ценному указанию...
Но ведь ребенок, как и дурень в сказке, не понимает мудреных иносказаний взрослых. Он воспринимает их буквально, схватывая в словах и объяснениях только то, что ему близко и понятно из его собственного жизненного опыта. И поскольку его опыт гораздо беднее, чем опыт взрослых, то в их словах он улавливает лишь часть заключенного в них смысла, понимая их буквально абстрактно. То есть[198] односторонне, очень общо. В результате вместо конкретного понимания (и под видом такового) он усваивает и принимает к сведению и к руководству крайне абстрактно-общий (а потому и коварно двусмысленный) рецепт...
То же и с числом.
Сначала школьнику объяснили, что число (один, два, три и т.д.) – лишь словесный или графический знак, выражающий то общее, что имеется в любых чувственно воспринимаемых единичных вещах, безразлично каких – будь то мальчики или яблоки, чугунные гири (пуды) или деревянные рейки (аршины).
Когда же он прилежно начинает действовать на основе такого абстрактного представления о числе («абстрактное» вовсе не значит здесь, как и везде, «не наглядное»; оно, напротив, предельно наглядно; абстрактное здесь – бедное, тощее, одностороннее, неразвитое, слишком общее, столь же «общее», как и словечко «потереться»), начинает складывать пуды с аршинами, ему говорят с укоризной: «Неспособный ты, неспособный! Тут надо было вперед посмотреть – одноименные ли это вещи...»
Прилежный и послушный ученик готов складывать только одноименные. Не тут-то было. В первой же задачке ему встречаются не только «мальчики» и не только «яблоки», а именно мальчики вперемежку с яблоками, а то еще и со зловредными девочками, каждая из которых хочет получить на яблоко больше, чем каждый мальчик...
Оказывается, что не только можно, но и нужно складывать и делить числа, выражающие разноименные вещи, делить яблоки на мальчиков, складывать мальчиков с девочками, делить килограммы на метры и умножать метры на минуты...
Числа одноименные в одном случае и смысле[199] оказываются разноименными в другом и в третьем. В одном случае включается один стереотип, а в другом – прямо противоположный. Какой же из них надо применить в данном? Какое из задолбленных правил вспомнить? А правил тем больше, чем дальше. И все разноречивые.
И приходилось сбитому с толку ребенку действовать методом проб и ошибок, тыкаться туда и сюда. Когда же сей хваленый, хотя и малопродуктивный метод, окончательно заводил его в тупик и никак не давал ответа, совпадающего с тем, что напечатан в конце задачника, ребенок начинал нервничать, плакать и в конце концов впадал либо в истерику, либо в состояние так называемой «ультрапарадоксальной фазы» – в мрачное оцепенение, в тихое отчаяние.
Каждый из нас подобную картину наблюдал, увы, каждый вечер почти в каждой квартире. Разве подсчитаешь, сколько горьких слез пролито детишками над домашними заданиями по арифметике? Зато известно, как много детей переживает обучение арифметике как тягостную повинность, даже как жестокое мучительство, а потому обретает к ней на всю жизнь отвращение. Во всяком случае, таких больше, чем тот счастливый процент «способных, талантливых, одаренных», который видит в ней интересное занятие, поприще для упражнения своих творческих сил, изобретательности, находчивости.
И природа тут ни капельки не виновата.
Виновата дидактика. Виноваты те представления об отношении абстрактного к конкретному, общего – к единичному, качества – к количеству, мышления – к чувственно-воспринимаемому миру, которые были положены в основу многих дидактических разработок.[200]