Читаем О науке полностью

Иначе обстоит дело со второй проблемой. Возьмем 10 000 первых логарифмов, которые я нахожу в таблицах. Среди этих 10 000 логарифмов я беру наудачу один; какова вероятность, что его третий десятичный знак есть четное число? Вы не затруднитесь ответить: ½ — и в самом деле, если вы просмотрите в таблице третьи десятичные знаки этих 10 000 чисел, вы найдете приблизительно столько же четных цифр, сколько и нечетных.

Или, если желаете, напишем 10 000 чисел, по количеству наших логарифмов; каждое из этих чисел пусть равно +1, если третий десятичный знак четный, и –1 в обратном случае. Возьмем затем среднюю величину из этих 10 000 чисел. Я не затруднюсь сказать, что эта средняя величина, вероятно, равна нулю; если бы я произвел вычисление в действительности, я убедился бы, что она очень мала.

Но эта проверка даже бесполезна. Я мог бы строго доказать, что это среднее меньше 0,003. Чтобы установить этот результат, мне пришлось бы привести довольно длинное вычисление, для которого здесь мало места, и поэтому я ограничусь ссылкой на статью, опубликованную мною в «Revue générale des Sciences» 15 апреля 1899 г. Единственный пункт, на который я должен обратить внимание, следующий: в этом вычислении я опирался только на два факта, а именно, что первая и вторая производные логарифма в рассматриваемом промежутке остаются заключенными в известных пределах.

Отсюда первое следствие: что это свойство справедливо не только для логарифма, но для какой угодно непрерывной функции, так как производные всякой непрерывной функции заключены в определенных пределах.

Если я уже заранее был уверен в результате, то это прежде всего потому, что я часто замечал аналогичные факты для других непрерывных функций; затем потому, что я — более или менее бессознательно и несовершенно — провел в уме рассуждение, которое привело меня к предыдущим неравенствам, подобно тому как опытный вычислитель, не доведя до конца умножения, соображает, что «получится приблизительно столько-то».

И кроме того, так как то, что я назвал бы моей интуицией, есть лишь несовершенный образ истинного рассуждения, то, как выяснилось, наблюдение подтвердило мои догадки, и объективная вероятность оказалась в согласии с вероятностью субъективной.

В качестве третьего примера я выберу следующую проблему: пусть число u взято наудачу, n — данное очень большое целое число; каково вероятное значение sin nu? Эта проблема сама по себе не имеет никакого смысла. Чтоб придать ей смысл, необходимо условное допущение: мы условимся, что вероятность того, что число u заключено между a и a + da, равна φ(a)da; что она, следовательно, пропорциональна величине бесконечно малой разности da и равна этой величине, умноженной на функцию φ(a), зависящую только от a. Что касается этой функции, то я выбираю ее произвольно, но надо предположить ее непрерывной. Так как значение sinnu остается тем же, когда u возрастает на 2π, то я могу, не ограничивая общности, допустить, что u заключено между 0 и 2π, и таким образом приду к допущению, что φ(a) есть периодическая функция с периодом 2π. Искомое вероятное значение легко выражается простым интегралом, и легко показать, что этот интеграл меньше чем

Mk,
nk

где Mk — наибольшее значение k-й производной функции φ(u). Итак, мы видим, что если k-я производная конечна, то наша вероятная величина стремится к нулю, когда n возрастает беспредельно, и притом быстрее чем

1/nk–1.

Итак, вероятное значение sin nu для очень большого n есть нуль; чтобы определить это значение, мне необходимо было сделать условное допущение, но результат остается тем же, каково бы ни было это условное допущение. Я наложил лишь небольшие ограничения, допуская, что функция φ(a) есть непрерывная и периодическая, и эти гипотезы столь естественны, что неясно, как можно было бы их избежать.

Обсуждение трех предыдущих примеров, столь различных во всех отношениях, до некоторой степени обнаруживает, с одной стороны, значение того, что философы называют принципом достаточного основания, а с другой — важность того факта, что некоторые свойства являются общими для всех непрерывных функций. Изучение вероятности в физических науках приведет нас к тому же результату.

III. Вероятность в физических науках. Перейдем теперь к проблемам, относящимся к тому, что я назвал выше второй степенью незнания; это — те проблемы, в которых известен закон, но неизвестно начальное состояние системы. Я мог бы умножать число примеров, но я возьму только один: каково в настоящее время вероятное распределение малых планет на зодиаке?

Мы знаем, что они подчиняются законам Кеплера: мы можем даже, не изменяя ничего в природе проблемы, допустить, что все их орбиты круговые и расположены в одной и той же известной нам плоскости. Зато мы совершенно не знаем, каково было их начальное распределение. И все же мы, не колеблясь, можем утверждать, что теперь это распределение приблизительно равномерно. Почему?

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное