Читаем О движении (Из истории механики) полностью

Эта практическая деятельность определила направление научных исследований Стевина. Большую часть времени и трудов он посвятил проблемам гидростатики. Свои гидростатические исследования Стевин изложил в упомянутом уже большом труде «Начала статики», изданном на фламандском языке в 1587 году.

Подобно Архимеду, Стевин при построении своих теорий исходил из немногих очевидных положений, но теоретические выводы подвергал проверке опытом. Он был не эмпириком, а экспериментатором в современном значении этого слова.

В основу своих исследований Стевин положил представление, что равновесие частицы жидкости обусловлено давлением окружающих ее частиц; так как каждая частица жидкости находится под действием силы тяжести, то отсюда следует, что она поддерживается в равновесии давлением снизу вверх, равным ее весу. Значит, погруженное в жидкость твердое тело испытывает давление снизу вверх, равное весу вытесненной им жидкости.

Так выводил Стевин известный закон Архимеда.

Далее Стевин разобрал все возможные случаи равновесия плавающих тел и применил их к определению устойчивости судов.

Судно с тяжелым грузом в трюме (слева) устойчиво, потому что у него центр тяжести находится ниже центра давления. Если же перегрузить палубу до того, что центр тяжести станет выше центра давления, то судно (справа) может опрокинуться.

Плавающее тело находится под действием двух сил. Одна из них — собственная тяжесть, влекущая тело вниз и приложенная к его центру массы. Другая — выталкивающая тело из жидкости вверх. Она равна весу вытесненной телом жидкости и приложена к центру давления, совпадающему с центром тяжести вытесненной жидкости.

По величине эти силы равны, а по направлению — диаметрально противоположны. В зависимости от относительного положения центра тяжести тела и центра давления, тело может находиться в устойчивом, неустойчивом или безразличном равновесии. Относительное же положение этих точек зависит от формы плавающего тела и степени его погружения в жидкость.

Положим, что трюм судна нагружен камнем или металлом. При большой нагрузке центр тяжести всего судна опустится ниже центра давления. Как бы ни было наклонено судно ветром, оно будет снова выпрямляться. Это — случай устойчивого равновесия.

Если же центр тяжести судна, например при большой нагрузке его палубы, переместится выше центра давления, то судно может опрокинуться. Это — случай неустойчивого равновесия.

Отметим, что и в этом случае плавающее тело может иногда сохранить устойчивое равновесие.

Допустим, что тело, центр тяжести которого лежит выше центра давления, наклонилось. Тогда центр давления переместится вправо или влево от линии, проведенной через центр тяжести и центр давления в состоянии равновесия.

Теперь на тело действует вращающая пара: сила тяжести G и сила давления А. Если направление давления, приложенного к новому его центру, пересекает указанную линию выше центра тяжести (эта точка М пересечения носит название метацентра), то равновесие восстанавливается. Когда же метацентр ниже центра тяжести — плавающее тело опрокидывается.

Случай, когда центр тяжести выше центра давления. S1- центр тяжести; S2— центр давления при состоянии равновесия; — S3 центр давления, когда тело наклонено; М — метацентр; G — сила тяжести; А — сила давления.

Занимаясь исследованием давления внутри жидкости, Стевин прибегал к мысленным опытам. Он представлял себе, например, что некоторая часть находящейся в равновесии жидкости отвердела. Это не меняет условий равновесия части, оставшейся в жидком виде.

Стевин первый пришел к мысли, что давление жидкости на дно сосуда зависит только от площади дна и высоты уровня жидкости.

Выделим мысленно в жидкости, находящейся в равновесии, несколько столбов разнообразной формы, опирающихся на одинаковые по размерам площадки, лежащие на одной и той же глубине. Эти площадки находятся под одинаковым давлением, так как в противном случае жидкость пришла бы в движение.

Теперь представим себе, что вся жидкость вне выделенных мысленно столбов затвердела. Оставшаяся жидкость столбов давит на основание их с той же силой, как и ранее.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука