Расстояние между соседними гребнями (или впадинами) называется длиной волны и обычно обозначается греческой буквой (лямбда) (рис. 6).
Увеличим число оборотов моторчика, а стало быть, и частоту колебаний стерженька вдвое. Тогда число волн, появившихся за то же время, будет вдвое больше. Но при этом длина волн будет вдвое меньше.
Число волн, образующихся в одну секунду, называется частотой волн. Она обычно обозначается греческой буквой (ню).
Пусть на воде плавает пробка. Под влиянием бегущей волны она будет совершать колебания. Подошедший к пробке гребень поднимет ее вверх, а следующая за ним впадина опустит вниз. За одну секунду пробку поднимет столько гребней (и опустит столько впадин), сколько за это время образуется волн. А это число и есть частота волны . Значит, пробка будет колебаться с частотой . Так, обнаруживая действие волн в любом месте их распространения, мы можем установить их частоту.
Ради простоты мы будем считать, что волны не затухают. Частота и длина незатухающих волн связаны друг с другом простым законом. За секунду образуется волн. Все эти волны уложатся на некотором отрезке (рис. 7). Первая волна, образовавшаяся в начале секунды, дойдет до конца этого отрезка; она отстоит от источника на расстоянии, равном длине волны, умноженной на число образовавшихся волн, то есть на частоту . Но расстояние, пройденное волной за секунду, есть скорость волны
Длину волны и скорость распространения волн часто узнают из опыта, но тогда частоту v можно определить из вычисления, а именно:
Частота и длина волн являются их существенными характеристиками; по этим характеристикам одни волны отличают от других.
Кроме частоты (или длины волны), волны отличаются еще и высотой гребней (или глубиной впадин). Высота волны измеряется от горизонтального уровня покоящейся поверхности воды. Она называется амплитудой, или размахом колебаний.
Амплитуда колебаний связана с энергией, которую несет волна. Чем больше амплитуда водяной волны (это относится также и к колебаниям струн, почвы, фундамента и т. д.), тем больше энергия, которая передается волнами, причем больше в квадрат раз (если амплитуда больше в два раза, то энергия больше в 4 раза и т. д.).
Теперь мы можем сказать, чем океанская волна отличается от зыби в пруду: длиной волны, частотой колебаний и амплитудой.
А зная, какими величинами характеризуется каждая волна, нетрудно будет понять и характер взаимодействия волн друг с другом.
Взаимодействие водяных волн
Создадим на воде два источника одинаковых по частоте и амплитуде воли. Для этого на знакомом нам приборе заменим стерженек
Когда встречаются два гребня, вода сильно поднимается вверх; при встрече двух впадин образуется двойное углубление.
Когда же в каком-нибудь месте встречается гребень волн одной череды со впадиной волн другой череды, поверхность воды остается спокойной. В этих местах волны «гасят» друг друга.
На рис. 8 показано, как взаимодействуют две череды волн. Черными дугами обозначены гребни. Если поставить рисунок на уровень глаз и смотреть на рисунок сбоку, то можно увидеть пестрые «штилевые» дорожки — места, где волны «гасят» друг друга.
Итак, волны, одинаковые по частоте и амплитуде, встречаясь друг с другом, могут в одних местах усилить друг друга, а в других — ослабить или вовсе погасить. Такое явление называется интерференцией.
Это явление характерно только для волн. Если в каком-либо опыте мы наблюдаем интерференцию, это означает, что налицо какой-то волновой процесс.
Устойчива ли картина интерференции. Будет ли картина интерференции устойчивой, или она каждое мгновение будет заменяться другой? Как вы увидите дальше, этот вопрос очень важен.
Проследим за некоторой точкой на поверхности воды, по которой расходятся две череды одинаковых волн. Пусть в этой точке плавает пробка. Мыслимы три случая. Под влиянием двух одновременно действующих последовательностей волн пробка будет либо находиться в покое, либо колебаться, либо попеременно то покоиться, то колебаться. Что же происходит в действительности?