…Удивительные взаимосвязи такого рода принадлежат к явлениям, которые всегда волновали математиков»[78].
Была обнаружена также взаимосвязь между рядом четных чисел и числом π. Более того, π появляется в уравнении «знаменитая пятерка»[79], выведенном великим швейцарским математиком XVIII века Леонардом Эйлером. В 1988 году читатели авторитетного математического журнала признали это уравнение «самой красивой математической формулой в истории математики».
Все эти изыскания в области истории расчета и применения числа π говорят о том, что даже сейчас, когда компьютеры выполняют многие математические расчеты, креативность человеческого ума всегда найдет себе выход. Применительно к количественному анализу в сфере бизнеса и корпораций компьютеры взяли на себя подавляющее большинство статистических расчетов. Но творчеству по-прежнему есть место там, где заходит речь об использовании этих расчетов для принятия решений.
И в заключение об аналитике и креативности
Хотелось бы надеяться, что нам удалось показать читателям: аналитическое мышление и креативность не только вполне совместимы, но и тесно взаимосвязаны. Вы не сможете ни стать хорошим количественным аналитиком, ни компетентно пользоваться аналитическими данными, если не умеете подключать к делу все ваши творческие способности. Однако помните, что в манипулировании цифрами и интерпретации результатов анализа баз данных креативность должна иметь предел. Творческий подход очень важен, но правда еще важнее.
Закон первой цифры – способ обнаружения мошенничества
Профессор математики в Политехническом институте штата Джорджия Тед Хилл в начале курса дает студентам задание на дом: или подбросить монетку двести раз и записать результаты, или представить, как подбрасываешь монетку двести раз, и сфальсифицировать результаты. На следующем семинаре он просматривает отчеты о домашней работе и, к восторгу аудитории, легко обнаруживает почти всех, кто занимался фальсификациями. Как это ему удается? На основании небольшого эксперимента он знает, что в некоторый момент при длительном подбрасывании монетки начинают выходить серии из шести-семи орлов или решек подряд. «Фальсификаторы» об этом не знают и интуитивно пытаются не писать подряд слишком много одинаковых результатов, поскольку считают, что это маловероятно. Хилл с первого взгляда выявляет записи о шести-семи орлах или решках, выпавших подряд (или их отсутствие), на основе чего и делает вывод о действительно проведенном студентом эксперименте или о фальсификации его результатов. На первый взгляд, это просто небольшой фокус для привлечения внимания студентов, но на самом деле в этом есть глубокий смысл. Если в данных отсутствуют те модели и зависимости, которые вы ожидали там увидеть, логично предположить фальсификацию или мошенничество.
Мы хорошо знаем, что наша система исчисления использует цифры от 1 до 9. Поэтому можно предположить, что вероятность выбора любой из этих цифр в качестве первой значащей в числе равна 1/9. Но, как ни странно, это не так. «Закон первой цифры», называемый также законом Бенфорда, гласит, что в списке чисел, взятых из реальных баз данных, частота распределения той или иной цифры на первое место в числе подчиняется специфической закономерности: примерно в 30 процентах случаев такой цифрой будет 1, а вероятность появления на первом месте остальных цифр тем меньше, чем цифра больше[80]. В соответствии с законом Бенфорда вероятность распределения цифр на первом месте в числе такова: