Количество — это что-то или ничто; если это что-то, оно еще не исчезло; если это ничто, оно буквально исчезло. Предположение, что имеется промежуточное состояние между этими двумя, — химера.
Под сенью Французской революции мистика была изгнала из математического анализа.
Несмотря на шаткие основания, к концу XVIII века математики по всей Европе достигли поразительных успехов, используя новый инструмент. Колин Макларен и Брук Тейлор, возможно, лучшие английские математики эры изоляции от континента, обнаружили, как использовать исчисление для того, чтобы записывать функции в совершенно новом виде. Например, используя некоторые уловки, математики обнаружили, что функция 1 / (1 —
Эти пояснения, вытекающие из свойств ноля и бесконечности, могут оказаться очень важными. Швейцарский ученый Леонард Эйлер, вдохновленный простыми манипуляциями с нолем и бесконечностью в исчислении, используя те же рассуждения, что и Макларен и Тейлор, «доказал», что сумма… 1 /
Тем, кто наконец укротил ноли и бесконечность, оказался подкидыш; в 1717 году на ступенях «Круглой церкви Святого Иоанна» (
Д’Аламбер наиболее знаменит своим двадцатилетним участием совместно с Дени Дидро в создании «Энциклопедии наук, искусств и ремесел». Однако Д’Аламбер был больше, чем энциклопедистом. Именно он осознал, как важно рассмотреть путь, а не только пункт назначения. Именно Д’Аламберу принадлежит идея предела и разрешение существовавшей в исчислении проблемы ноля.
Рассмотрим еще раз историю Ахиллеса и черепахи — сумму шагов, все больше и больше приближающихся к нолю. Манипуляции с суммой бесконечного числа слагаемых — будь это проблема Ахиллеса, нахождение площади, ограниченной кривой, или альтернативное представление математической функции — заставили математиков прийти к противоречивому результату.
Д’Аламбер понял, что проблема Ахиллеса решается, если рассмотреть предел этой гонки. В приведенном выше примере с каждым шагом черепаха и Ахиллес приближаются к отметке в два фута. Ни один шаг не позволяет им продвинуться дальше и даже не позволяет им поравняться. В каждый момент они делаются ближе к указанной отметке. Таким образом, предел гонки — окончательный пункт назначения — и есть отметка в 2 фута. Именно там Ахиллес перегонит черепаху.
Однако как доказать, что 2 фута — на самом деле предел гонки? Я бросаю вам вызов. Задайте мне маленькое расстояние — сколь угодно малое, и я скажу вам, когда и Ахиллеса, и черепаху будет отделять от предела расстояние меньшее, чем заданное.
Например, пусть вы задали мне расстояние в одну тысячную фута. После некоторых вычислений я скажу вам, что после одиннадцатого шага Ахиллес окажется в 977 миллионных от отметки в 2 фута, а черепаха — в половине этого расстояния. Я принял ваш вызов и выиграл, имея даже 23 миллионных фута в запасе. Что было бы, если бы вы назвали расстояние в одну миллиардную фута? После 31 шага Ахиллес был бы в 931 триллионной от цели — на 69 триллионных ближе, чем требовалось, а черепаха снова в половине этого расстояния. Каков бы ни был ваш вызов, я выиграю, назвав вам момент, в который Ахиллес будет ближе к цели, чем вы потребовали. Это показывает, что действительно Ахиллес в процессе гонки как угодно близко подбегает к отметке в два фута: два фута — это предел гонки.
Теперь вместо того, чтобы думать о гонке как о сумме бесконечного числа шагов, представьте ее себе как предел конечных частичных гонок. Например, в первой из них Ахиллес добегает до отметки в один фут. Всего при этом он пробегает один фут. В следующей частичной гонке он пробегает две части — сначала один фут, потом еще полфута. Всего он пробегает 1 + 1 / 2 — всего 1,5 фута. Третья частичная гонка приведет его на 1 + 1 / 2 + 1 / 4 — всего на 1,75 фута. Каждая из этих частичных гонок конечна и ясно определена, и мы никогда не сталкиваемся с бесконечностью.