Читаем Ноль: биография опасной идеи полностью

Кеплер был не единственным выдающимся ученым, который рассекал объекты на бесконечно тонкие слои. Галилей тоже размышлял о бесконечности и бесконечно малых величинах. Об этих двух идеях — бесконечно больших и бесконечно малых, превосходящих наше конечное понимание, он писал: «Первых (мы не понимаем) по причине их огромности, вторых — их малости». Однако несмотря на глубокую тайну бесконечных нолей, Галилей чувствовал их могущество. «Представьте себе, чем они становятся, объединившись», — поражался он. Ученик Галилея Бонавентура Кавальери отчасти ответил на этот вопрос.

Вместо винных бочек Кавальери рассекал геометрические объекты. Для Кавальери всякая площадь, как, например, площадь треугольника, состояла из бесконечного числа имеющих нулевую ширину отрезков прямых, а всякий объем — из бесконечного числа имеющих нулевую высоту плоскостей. Эти неделимые отрезки и плоскости подобны атомам площади и объема; дальше делить их нельзя. Как Кеплер измерял объем винной бочки с помощью тонких слоев, так Кавальери складывал бесконечное число неделимых нолей для определения площади или объема геометрического объекта.

Утверждения Кавальери весьма беспокоили геометров. Сложение бесконечного числа имеющих нулевую площадь отрезков не могло дать двумерного треугольника, а бесконечного числа имеющих нулевой объем плоскостей — трехмерный объект. Это была та же проблема: нет логического смысла в сумме бесконечного числа нолей. Тем не менее метод Кавальери всегда приносил правильный ответ. Математики стали игнорировать логические и философские нестыковки при сложении бесконечного числа нолей, особенно поскольку неделимые, или бесконечно малые, как их стали называть, величины наконец позволили найти ответ на давно существовавшую проблему касательной.

Касательная — это прямая, лишь слегка целующая кривую. Для любой точки гладкой кривой, существующей в пространстве, имеется прямая, лишь задевающая кривую, касаясь ее только в одной точке. Это и есть касательная, и математики обнаружили, что она чрезвычайно важна при изучении движения. Например, представьте себе, что вы вращаете мяч на веревочке над головой. Он движется по окружности. Однако если вы внезапно перережете веревочку, мяч улетит по касательной к этой окружности; сходным образом рука питчера в бейсболе движется по дуге в момент броска, но как только он выпустит мяч, тот летит по касательной (рис. 24).

Рис. 24. Полет по касательной

Другой пример: если вы захотите узнать, куда упадет мяч у подножия холма, вы будете искать точку, в которой касательная горизонтальна. Крутизна касательной — ее наклон — обладает в физике некоторыми важными свойствами: например, если у вас имеется кривая, представляющая траекторию движения велосипеда, то наклон касательной к этой кривой в каждой данной точке скажет вам, с какой скоростью двигался велосипед в момент, когда он этой точки достиг.

По этой причине несколько математиков XVII века, такие как Эванджелиста Торричелли, Рене Декарт, француз Пьер де Ферма (прославившийся своей последней теоремой) и англичанин Исаак Барроу, разрабатывали различные способы нахождения касательной в каждой точке кривой. Как и Торричелли, все они столкнулись с проблемой бесконечно малых величин.

Чтобы провести касательную к кривой в данной точке, лучше всего сделать так: выбрать другую точку поблизости и соединить две точки. Полученная прямая не будет в точности касательной, но если кривая не слишком ухабиста, две прямые будут довольно близки друг к другу. Можно предположить, что по мере того как уменьшается расстояние между двумя точками, соединяющая их прямая все ближе совпадет с касательной (рис. 25). Когда точки окажутся на нулевом расстоянии друг от друга, такое приближение даст вам касательную. Конечно, тут есть проблема.

Рис. 25. Аппроксимация касательной

Самой важной особенностью прямой является ее наклон, и чтобы измерить его, математики выясняют, насколько прямая поднимается на определенном расстоянии. Например, представьте себе, что вы едете на восток вверх по холму; при этом на каждую милю, которую вы проехали, приходится подъем на полмили. Наклон холма — это просто подъем (полмили) над горизонтальным расстоянием, которое вы проехали (милей). Математики сказали бы, что наклон холма — 1/2. Это же верно для прямых: чтобы определить наклон прямой, вы смотрите, насколько она переместилась по вертикали (математики обозначают это символом Oy) при заданном перемещении по горизонтали (которое обозначается Ox); таким образом, наклон равен Oy / Ox.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
1917 год. Распад
1917 год. Распад

Фундаментальный труд российского историка О. Р. Айрапетова об участии Российской империи в Первой мировой войне является попыткой объединить анализ внешней, военной, внутренней и экономической политики Российской империи в 1914–1917 годов (до Февральской революции 1917 г.) с учетом предвоенного периода, особенности которого предопределили развитие и формы внешне– и внутриполитических конфликтов в погибшей в 1917 году стране.В четвертом, заключительном томе "1917. Распад" повествуется о взаимосвязи военных и революционных событий в России начала XX века, анализируются результаты свержения монархии и прихода к власти большевиков, повлиявшие на исход и последствия войны.

Олег Рудольфович Айрапетов

Военная документалистика и аналитика / История / Военная документалистика / Образование и наука / Документальное