Глиальные клетки выполняют изолирующие функции, формируя как гематоэнцефалический барьер, так и изоляцию мембран отростков нейронов друг от друга. Эта важнейшая функция глиальных клеток обеспечивает стабильную среду для передачи электрической волны перезарядки наружной мембраны нейронов. Следует подчеркнуть, что глиальные клетки, независимо от их частной функции, находятся в сложных метаболических отношениях с нейронами и их отростками. Полноценная работа нейронов в отсутствие глиальных клеток невозможна. Таким образом, глиальные клетки являются основным компонентом гематоэнцефалического барьера и обеспечивают метаболическую активность нейрона. На каждый нейрон, включая отростки — аксоны и дендриты, приходится от 10 до 1300 глиальных клеток различных типов. Количество этих барьерных клеток индивидуально изменчиво, поскольку люди различаются ростом, массой тела и размерами мозга. Независимо от соматических различий и уровня метаболизма барьерные функции остаются неизменными. Следовательно, парадоксальная иммунологическая несовместимость нервной системы с остальным организмом человека является непреодолимым фактором естественного происхождения.
Второй парадокс нервной системы связан с особенностями кровообращения головного мозга человека. Наиболее важным общим принципом ограничения возможностей мозга является физиологический предел увеличения метаболизма. При самой интенсивной работе мозга уровень потребления кислорода может достигать 38%, а пищи — 25%. При этом уровне метаболизма мозг может эффективно работать ограниченное время. С учётом полноценного сна среднее время поддержания такого уровня обмена обычно не превышает двух-трёх недель, хотя встречаются исключения. По многочисленным отсроченным наблюдениям, чрезмерная активность и феноменальная трудоспособность отмечаются у людей с нарушением неврологического или психиатрического статуса и к вменяемым результатам обычно не приводят.
Повышение уровня метаболизма мозга сверх естественных пределов практически невозможно. Популярные психотропные препараты обычно только создают иллюзию увеличения активности мозга, формируя ощущения, но не давая результата. Бурное желание совершить интеллектуальный подвиг обычно заканчивается пустой суетой и неприятной усталостью. Если химические стимуляторы действительно увеличивают обмен мозга, то за это приходится дорого платить. Искусственные стимуляторы вызывают метаболические сдвиги в работе нейронов и глиальных клеток, которые восстанавливаются намного дольше, чем в нормальных условиях. Если реальное повышение метаболизма мозга сверх физиологической нормы продолжается сутки, то на полное восстановление понадобится 3–4 дня. Вполне понятно, что за это время при спокойной работе можно обдумать и сделать намного больше, чем за сутки суетливого мышления. Следовательно, химическая стимуляция мозга не эффективна, если учитывать отдалённые последствия краткосрочного воздействия. Она может использоваться в крайних случаях и не для решения творческих задач.
Это ограничение обусловлено фундаментальным свойством клеток мозга образовывать новые связи между отдельными нейронами при решении творческих задач. В короткие сроки простимулировать сложный и многоступенчатый морфогенез отростков невозможно, что сводит созидательный порыв мышления к шахматной комбинаторике. Иначе говоря, искусственно простимулировав мозг, мы добиваемся более быстрого перебора вариантов уже имеющихся решений, упрощая свой мозг до уровня примитивного компьютера. При этом появление совершенно новых решений возможно, но их вероятность будет той же, что и при нормальной физиологической работе мозга. Этот процесс опосредован временем физического формирования синаптических межклеточных контактов, которые и в норме образуются с предельно возможной скоростью. По этой причине лучше всего планировать методичную работу, а не применять модный «мозговой штурм». Например, за 5 часов работы в мозге 10 офисных «штурмовиков» новых связей образуется вдвое меньше, чем у одного оболтуса на мягком диване за 50 часов. Если уговорить этого ленивца двое суток думать не о девочках и машинках, а о существующей проблеме, то результат будет намного лучше, чем у бодрых имитаторов публичного мышления.
Другая крайность связана с праздностью мозга, или ночным сном. Метаболизм организма человека во время сна и отдыха системно снижается, что не требует отдельного обсуждения. Аналогичные события происходят и в головном мозге. На энергетическое обеспечение мозга спящего человека расходуется около 20–25% вдыхаемого кислорода и примерно 8–9% метаболических соединений. Величины рассчитаны в процентах от общих расходов всего организма. Вполне понятно, что различия в размерах тела дадут несколько иные относительные расходы на содержание нервной системы. Исходные цифры получены для молодых половозрелых мужчин с массой тела 75 кг и массой мозга 1320 г.