Различия между живыми организмами, находящимися в очень далеком родстве, и между их клетками многообразны. Очень уж по-разному организованы неклеточные, одноклеточные и многоклеточные формы жизни, животные и растения. О причинах их различий по чувствительности высказывали разные соображения. И, вероятно, каждый был в какой-то степени прав, но никто не был прав до конца. Мы займемся более простыми вопросами: различиями в радиочувствительности у близких организмов и ее изменением под влиянием сопутствующих факторов и условий. В биологическом действии радиации очень большую роль играет поражение хромосом — наследственного аппарата клетки. Поэтому естественно искать причины различий радиочувствительности у близких организмов в различиях их хромосомного набора.
Природа сама дает объект для таких исследований. Этот объект — полиплоидия. Чаще всего клетки содержат по две хромосомы каждого сорта (то есть двойной, или диплоидный, набор), но среди растений встречаются виды, клетки которых содержат по четыре набора (тетраплоиды), по шесть наборов (гексаплоиды) и т. д. Полиплоидия широко распространена в растительном мире. Некоторые группы растений даже образуют так называемые полиплоидные ряды. Например, в роде пшениц встречаются виды с 14, 28 и 42 хромосомами. К диплоидам (с 14 хромосомами) относится ряд диких видов, а также культивируемая кое-где на Кавказе и в Испании пшеница-однозернянка. К тетраплоидам относятся твердые пшеницы, к гексаплоидам — мягкие. Полиплоидные ряды — замечательный объект для изучения влияние числа хромосом на радиочувствительность. И не удивительно, что многие экспериментаторы использовали это в своих опытах.
Опыты на полиплоидах давали результаты, на первый взгляд противоречивые. При вызывании генных мутаций более чувствительными оказывались виды с меньшим числом хромосом, при вызывании хромосомных — с большим. Но этого и следовало ожидать. Генная мутация — изменение свойств одного из генов. Даже у диплоидов далеко не все генные мутации обнаруживают свое действие: им противодействует оставшийся неповрежденным другой такой же ген. А у полиплоидов — три, пять или даже больше нормальных разновидностей того же гена, которые еще надежнее маскируют возникшую мутацию.
Другое дело — хромосомные мутации. Их можно наблюдать под микроскопом. И если возник фрагмент или обмен, он будет заметен независимо от того, сколько в клетке нормальных хромосом. То же касается и действия хромосомных мутаций. Они оказывают свое влияние на судьбу клеток вследствие механических трудностей, которые создают некоторые обмены для деления клеток, и нарушения генного равновесия при потере фрагментированных хромосом. Ни тому, ни другому присутствие нормальных хромосом не препятствует.
А в какой клетке легче вызвать изменение хромосом — с 14 или с 28 хромосомами? Конечно, в клетке с большим числом хромосом: чем крупнее мишень, тем легче в нее попасть. И здесь та же доза облучения вызывает большее число хромосомных мутаций. Поэтому и при наблюдении общих эффектов, таких, как выживание, скорость роста, полиплоиды обычно оказываются более чувствительными.
Это, кстати, один из доводов в пользу того, что хромосомные мутации играют важную роль в биологическом действии радиации вообще.
Несколько лет назад американский ботаник Сперроу провел большую работу по сравнению радиочувствительности разных видов растений. Влияние радиации на рост и выживание растений сопоставляли с особенностями их хромосомного набора. Сравнение с числом хромосом мало что дает, так как разные виды отличаются не только числом, но и величиной хромосом. Ученые взяли наиболее существенный показатель — содержание ДНК на клетку, то есть количество хромосомного материала. И что же: чем больший объем в клетке занимают хромосомы, тем чувствительнее, как правило, оказываются растения. Совершенно строгой зависимости не было, и если, например, у двух каких-то растений содержание ДНК различалось в два раза, то радиочувствительность вовсе не отличалась ровно вдвое. Значит, «объем мишени» не единственный фактор, определяющий радиочувствительность, но роль его настолько велика, что связь между чувствительностью и массой хромосом не могут затушевать все другие факторы.
А причины вариаций радиочувствительности у одного и того же вида помогло выяснить открытие эффекта восстановления. Разработан метод для количественного определения числа первично поврежденных клеток. Совершенно ясно, что, применяя этот метод, можно подразделить разницу в общем эффекте на различия в первичной поражаемости и в степени пострадиационного восстановления.
Эти исследования показали, что различия в степени восстановления — самая важная причина, определяющая различия в радиочувствительности у организмов одного вида в разных условиях. И здесь эта причина не единственная, но она, по-видимому, играет ведущую роль. При этом обнаружилось, что многие случаи вариаций радиочувствительности, которые раньше объясняли другими причинами, оказались связанными с восстановлением.