— Я думаю, — завершил он свои рассуждения, — что глютатион тебе не нужен. Его защитные свойства в опытах Бэйрона наверняка связаны с присутствием цистеина. Ведь именно цистеин составляет легкоокисляемую часть молекулы. Правда, цистеина у нас тоже нет, но его приготовить гораздо проще, чем глютатион. Я попробую.
Через три дня после этого разговора я с благодарностью прижимал к груди запаянные ампулы с белым кристаллическим порошком, а еще через час впрыскивал раствор белым крысам и нес их под рентгеновскую трубку. Как жаль, что пройдет еще несколько дней, прежде чем будут какие-то результаты!
Прошло четыре дня… Контрольные животные почти все погибли, осталось в живых только 8 процентов. А из тех, кому перед облучением той же дозой был введен раствор цистеина, больше половины жили. Первый же опыт по поискам лекарства от облучения оказался удачным! Правда, подопытные животные хотя и жили, но выглядели явно больными. И следующие дни принесли разочарование. Через полторы недели не осталось ни одной крысы — ни контрольной, ни опытной.
Но лиха беда начало. Вначале мы не знали, сколько цистеина можно вводить животным, и были слишком осторожны. В дальнейших опытах дозировка цистеина была увеличена в десять раз. Мы также не знали, как лучше применять цистеин: вводить под кожу, или в кровь, или еще как-нибудь. Не знали, в какое время его следует вводить. Приходилось действовать наугад. Очень скоро результаты удалось сильно улучшить. При дозах, убивавших 70–80 процентов животных, с помощью цистеина удавалось спасти около половины, причем эффект не был временным, животные вообще оставались живы.
Как я уже говорил, мысль применить глютатион или цистеин в опытах по облучению животных напрашивалась сама собой. И естественно, что такие опыты более или менее одновременно поставили разные ученые в разных странах. В печати же раньше других появилось сообщение об опытах американца Гарвея Патта.
Вскоре попробовали вводить цистеин людям перед их облучением в клинике. Как и ожидалось, цистеин снимал у большинства пациентов общую реакцию.
Когда одного студента-двоечника спросили, чем дышит кузнечик, то он задумчиво втянул в себя воздух и радостно ответил: «ноздрей», за что и получил свою обычную оценку. А действительно, чем мы дышим? На этот вопрос ответить не так-то просто. Можно сказать — легкими, а можно сказать — кислородом. Но ведь смысл дыхания не в том, чтобы наполнять легкие воздухом и вновь выпускать его. Кислород нужен, чтобы окислять («сжигать») питательные вещества в клетках нашего тела. За счет этого наш организм получает энергию. Кислород разносится по всему телу гемоглобином, красящим веществом крови, а в клетках целая серия биологически активных веществ — ферментов использует кислород для окисления органических веществ. Поэтому лишить клетки кислорода можно по-разному: можно заткнуть ноздри (и студент был по-своему прав), можно подавить работу легких, а можно и помешать гемоглобину переносить кислород от легких к клеткам.
Вероятно, именно так и думал известный бельгийский фармаколог, иностранный член Академии наук СССР Зенон Бак, когда размышлял о возможности использования кислородного эффекта. Ведь вовсе не обязательно для получения кислородного эффекта помещать облучаемый организм в безвоздушное пространство. Достаточно лишить его клетки кислорода. А сделать это можно по-разному.
Некоторые яды, и притом очень опасные, такие, как синильная кислота и угарный газ, как раз отравляют дыхание. Они обладают свойством соединяться с гемоглобином прочнее, чем кислород. Гемоглобин оказывается занят, кислород не может к нему присоединиться, и клетки задыхаются. А что, если животным ввести такой яд перед облучением? Можно подобрать дозировку, которая не будет их убивать, но сильно подавит дыхание. По прошествии некоторого времени яд все-таки уйдет из крови, не оставив вредных последствий.
Бак ввел мышам перед облучением соль синильной кислоты — цианистый натрий. Результат получился примерно такой же, как и от введения цистеина.
Ученые стали испытывать другие вещества, связывающие гемоглобин, средства, блокирующие внутриклеточные дыхательные ферменты, подавляющие дыхательный центр в головном мозгу. Все они оказывали больший или меньший эффект.
Пробовали применять вещества, как будто и не имеющие отношения к дыханию и даже совсем индифферентные, вроде глицерина, — многие из них также оказывали защитный эффект.
Прошло несколько лет. Ленинградский фармаколог и радиобиолог Всеволод Петрович Парибок, сам много занимавшийся противолучевой защитой, решил вместе со своими сотрудниками собрать воедино материал, который накоплен учеными всех стран по противолучевой защите. Они стали составлять таблицу, где по каждому средству приводились основные данные, причем в самом телеграфном стиле. Таблица была опубликована и заняла ни много ни мало целых две книги большого формата. Оказалось, что очень многие вещества обладают противолучевыми свойствами.