Поначалу я не обращал внимания на последовательность клевков как таковую. Этим я занялся уже позже, когда переехал в Калифорнию. Если не ошибаюсь, причина была весьма прозаична: устройство, сконструированное Яном, позволяло считать клевки, но не позволяло точно записывать тот порядок, в котором цыпленок их совершал, а сам Ян к тому времени вернулся в Германию и не мог помочь мне с усовершенствованием установки. Кроме того, я, кажется, был слишком увлечен красотой попперианской идеи вывести математическую формулу, которая позволяла бы прогнозировать значения одного регистрируемого показателя, исходя из значений других регистрируемых показателей.
Как выяснилось, цыплята предпочитали синие мишени не только зеленым, но и красным, а красные предпочитали только зеленым. Я придумал эксперимент, в котором предоставил им возможность выбирать между синим и зеленым, синим и красным, а также красным и зеленым, и в каждом случае регистрировал долю клевков по мишени предпочитаемого цвета
Я назвал эту формулу “прогноз 1”. Меня привлекало в ней то, что она позволяла прогнозировать точные значения количественного параметра.
Теперь мне предстояло проверить этот прогноз. Станут ли цыплята вести себя в соответствии с ним? Да, к моей несказанной радости, в семи из восьми повторностей эксперимента они вели себя почти в точности так, как предписывал прогноз. Результаты восьмого эксперимента были настолько не похожи на результаты остальных семи, что, когда одна из моих статей была опубликована в журнале “Поведение животных”[93], в издательстве, к моей крайней досаде, соответствующую точку на графике удалили, приняв ее за изъян печатной формы! К счастью, из таблицы соответствующая цифра никуда не делась, иначе меня могли бы обвинить в преднамеренном искажении данных. После этого я провел еще одну серию экспериментов, в которых цыплята не клевали мишени, а заходили в камеры, освещенные светом разных цветов. На приведенном здесь графике представлены результаты обеих серий экспериментов и прогнозируемые значения процента предпочтений “лучшего” цвета “худшему”.
Если бы прогноз был идеальным, все точки лежали бы ровно на диагональной линии. За исключением восьмого эксперимента, о котором уже было сказано, прогнозы модели пороговых значений побуждения оказались намного лучше, чем можно было надеяться получить в экспериментах, посвященных поведению животных (в физических экспериментах точность обычно выше, потому что меньше статистическая ошибка измерений).
Кроме того, я использовал те же данные, чтобы проверить прогнозы, сделанные на основе альтернативной, более простой модели, исходившей из того, что каждый цвет имеет для цыпленка определенную “ценность” и вероятность выбора того или иного цвета пропорциональна его ценности. Прогнозы обеих моделей были похожи, так что если одна из них была верна, другая неизбежно должна была быть почти верна. Но модель пороговых значений побуждения неизменно позволяла прогнозировать наблюдаемые результаты точнее. Модель “ценности цветов” постоянно давала заниженные оценки показателя