Это верно в отношении распределения галактик на большой шкале, а также в отношении наблюдаемого реликтового излучения. Это позволяет нам создать модель сферической симметричной Вселенной с нами в центре, что будет подтверждено (по крайней мере, не опровергнуто) астрономическими наблюдениями. В целом подобная модель не может стать популярной в философском смысле ввиду того, что геоцентрическая модель с Землей в центре Вселенной, а затем и гелиоцентрическая модель с Солнцем в центре Вселенной провалились. Так что модель Вселенной с нашей галактикой в центре хотя и возможна, но очень мало вероятна.
Мы можем применить космологический принцип, гласящий, что предположить гомогенность[32] Вселенной следует потому, что это наиболее простой вывод, основывающийся на наблюдениях.
Другой аргумент основывается на уже упомянутой Friedmann-Lemaitre (FL) модели, подтвержденной наблюдениями. Но так или иначе проблемы, связанные с астрономическими наблюдениями, невозможность точного измерения расстояний не позволяют вполне полагаться на этот аргумент. То есть теоретически астрофизическая космология может решить эту задачу, но практически она не в состоянии предъявить достаточное доказательство, основанное на наблюдениях, в силу указанных ограничений.
Таким образом, общепринятой является пространственная однородность (гомогенность) Вселенной, хотя и доказанной ее считать невозможно.
Однако альтернативой является предположение, что мы живем в пространственно неоднородной сферической Вселенной, при том, что все равно наша галактика находится близко к ее центру с космологическим красным смещением (cosmological redshift)[33], частично объяснимым гравитацией.
Подобным образом данные, получаемые от наблюдения сверхновых в других галактиках (supernova data), интерпретируются как доказательство космологической константы, что тоже может служить доказательством негомогенности без необходимости введения понятия темной “dark energy”. Большинство космологов не принимают подобного подхода, однако не существует доказательства, что он неверен. Приведенные факты иллюстрируют дополнительную неопределенность в этом вопросе, напоминая, что доказательство гомогенности Вселенной не так просто, как кажется.
Давайте рассмотрим так называемый физический аргумент. Он гласит, что физические процессы, такие как космологическая инфляция[34], делает существование гомогенной Вселенной очень вероятным, во всяком случае, более вероятным, чем существование негомогенной Вселенной. Хотя это и важный аргумент, мы должны отдавать себе отчет, что мы всего лишь заменяем обсервационный тест теоретическим предположением, которое может быть как верным, так и неверным.
Может показаться, у космологов нет конкретного доказательства, что инфляция действительно имела место на ранних стадиях развития Вселенной. Инфляционная теория популярна потому, что она в состоянии предсказать анизотропию реликтового излучения на малой шкале.
Однако и другие модели могут дать подобные предсказания.
Не означает ли это, что прежде чем пытаться объяснить инфляцию с помощью «темной энергии» “dark energy[35]”, стоит найти более весомое доказательство, что инфляция имела место?
Неопределенность Вселенной в нашем представлении порождает ситуацию, при которой гипотетические явления объясняются новыми гипотетическими материями, и этой бесплодной деятельности не видно конца.
Одним из выходов из сложившегося положения может стать переосмысление понятия времени в рамках науки космологии. Так, например, Джулиан Барбур (Julian Barbour) в своей книге «Конец времени: следующая революция в физике»[36], впервые опубликованной в 1999 г., отрицает существование времени, считая его не более чем иллюзией. Книга начинается с описания развития взглядов автора на время. После окончания физического факультета Барбур увлекся идеями о новой интерпретации времени. Он ознакомился с работами Поля Дирака (Paul Dirac), котрые привлекли его внимание к квантовой физике.