Вспомним рациональный, поразительно простой и эффективный принцип действия ЖРД (см. рис. 5). Горючее и окислитель из баков подаются центробежными насосами в камеру сгорания: окислитель — непосредственно к своим форсункам, а горючее — к своим, но через узкую полость между двойными стенками камеры сгорания и сопла. Только так, используя большой поток горючего в качестве охладителя, можно защитить камеру и сопло (конструктивно они представляют одно целое) от чудовищного (выше вулканического) жара, развиваемого внутри этого химического двигателя. Горючее, подогреваемое между стенками, готовится к процессу смесеобразования. В реальных двигателях вспомогательный насос подает его из отдельного бака в газогенератор — специальную меньшую камеру, работающую при более низкой температуре. Здесь оно газифицируется и идет как рабочее тело на колесо турбины. Турбина вращает соосно расположенные основной и вспомогательный насосы — все в целом образует ТНА (турбонасосный агрегат), компактный сгусток современной технической мысли; перед запуском ЖРД его раскручивает специальный стартовый движок. Автоматика регулирует режим работы, поддерживает заданную пропорцию жидких компонентов.
Камера сгорания ЖРД — подлинное царство капель, они владеют всем пространством на начальном ее участке — там нет никакой металлической начинки, как в ВРД (форкамеры, стабилизаторы). Здесь оба компонента реакции — и горючее, и окислитель — используются в виде жидкости, например керосин и сжиженный кислород (или спирт с азотной кислотой, отдающей кислород при разложении). В этом заключается отличие от ВРД, для которого возят с собой только жидкое горючее, а окислитель даровой — из воздуха атмосферы.
Все ВРД — проточные каналы, ЖРД — глухой горшок, дно его плотно усажено сотнями форсунок — форсуночная головка должна за секунду пропускать многие килограммы жидкости. В форсуночной головке распылители обоих компонентов расположены в определенном порядке, чтобы каждый факел горючего равномерно по возможности насытить окислителем. Часто используют сотовое расположение, подсказанное архитектурой пчелиного улья.
В адском горшке ЖРД приготовляется более калорийное варево, чем в камере ВРД. Температура газов на выходе из двигателя достигает 3500 К и более. Однако набор процессов смесеобразования здесь в принципе тот же, что и в воздушных камерах: распыливание, движение и испарение капель, смешение паров до горючей концентрации, только организованы они сложнее во времени и в пространстве. Все явления протекают почти рядом, бок о бок друг с другом и горением. Исследователи нарисовали картину рабочего процесса в ЖРД. Плотное облако капель в факелах форсунок увлекает за собой слои окружающего газа, на их место обратно засасываются встречные струи горячего газа — продукты полного и неполного сгорания из начальной зоны пламени. Образуются обратные токи — вблизи форсуночной головки крутятся колечки интенсивных вихрей. Только жидкие розетки, и густое облако капель спасают сами форсунки от выгорания.
Химическая реакция горения протекает бурно и идет преимущественно в газовой фазе; сквозь газ движутся горящие капли — давление в камере высокое: 50 и более атмосфер. Температура быстро нарастает от задней стенки к выходу камеры. Продукты сгорания поступают в реактивное сопло, где поток разгоняется до высоких сверхзвуковых скоростей, и таким образом тепловая энергия преобразуется в кинетическую. Мы помним счетверенные слепящие блики на теле- или киноэкране, когда показывают запуск космического корабля,— это огненные выхлопные струи из сопел связки двигателей, ими оснащена космическая ракета, идущая в зенит.
Мощность и тяга современных ЖРД очень велики. Пять двигателей первой ступени американской ракеты «Сатурн», забросившей «Аполлоны» на Луну, имели тягу около 600 тонн каждый.
Приведем некоторые цифры для характеристики таких мастодонтов современной ракетно-космической техники, как «Сатурн-V» (двигатель F-1). Мощность одного двигателя первой ступени оценим по параметрам реактивной струи. Массовый расход компонентов
Таким образом, двигатель диаметром около метра развивает мощность примерно 10 Днепрогэсов!
Оценим число капель, вылетающих в секунду из форсунок такого двигателя. Секундный расход жидкости равен произведению числа капель
Если принять средний диаметр капли в спектре распыливания равным 100 мкм, а среднюю плотность равной 1 г/см3, то получим, что