Читаем Необыкновенная жизнь обыкновенной капли полностью

Мы интенсивно искали методику эксперимента. В технической задаче такого рода открывались два раз­личных пути. Рассматривать явление как оно есть, в условиях, близких к реальным,— факел распыливания в камере с потоком нагретого воздуха — и искать эмпи­рическую зависимость степени испарения, растущей до­ли испаренного вещества по длине. Или выделить одну-единственную каплю из всего роя и изучать механизм процесса в более простом и ясном проявлении с надеж­дой на дальнейшие обобщения. Первый путь сулил, ка­залось, реальные и сравнительно быстрые результаты — виделся несложный эксперимент: улавливать жидкость гребенкой отбора — шеренгой согнутых Г-образных тру­бочек, пользуясь осевой симметрией потока. Правда, самые мелкие капли могли облетать трубочки. Но в спектре распыливания некоторых форсунок доля таких капель была невелика, и расчеты позволяли вносить поправку. Вычисляя разницу расхода из форсунки я массы отобранной жидкости, оказалось возможным по­строить кривую роста степени испарения. Вскоре мы по­лучили целый «чемодан кривых», как говорила техник Раиса, прилежно строившая все эти графики. Но ника­кой закономерности подметить не удавалось. Обобщение в виде эмпирической формулы не получалось — ум, как и глаз, не мог сразу охватить сложное многообразие летящих и испаряющихся капель. Мы, правда, получи­ли при этом некоторое представление о реальных интер­валах и скоростях испарения, что для начала тоже оказалось ценным.

Оставался второй путь. Одиночная неподвижная кап­ля должна была послужить простейшей моделью, на ко­торой можно было подсмотреть действие закона испаре­ния и описать его математически. Это открывало путь к возможному обобщению. Некоторые экспериментато­ры вообще начинали с «железных капель». На поверх­ность металлического шара через мелкие поры подавал­ся тонкий слой жидкости — поддерживалась неизмен­ная толщина испаряющейся пленки, что соответствова­ло стационарным условиям опыта. По расходу жидкости судили о скорости испарения.

Более близкими к реальному процессу выглядели экс­перименты с каплями диаметром два—три миллиметра, подвешенными на проволочку термопары — прибора, из­меряющего температуру жидкости. Каплю заключали в ящик — термостат с определенной температурой. Он имел окна, иногда кварцевые. В случаях высоконагре­той среды или опытов с горением капли киноаппарат фиксировал ее меняющиеся размеры. Шаровая симмет­рия явления, казалось бы, позволяла составить уравне­ние процесса, математически решить задачу и сопоста­вить результат с данными опыта. Но не тут-то было — природа вмешалась в идеальные схемы. Капля окутыва­лась направленным вертикальным языком паров или продуктов сгорания. Они всплывали в окружающей среде, поскольку отличались от нее по удельному весу — явление естественной конвекции, обусловленное подъем­ной силой Архимеда. Модель шаровой симметрии лома­лась, получался некий искусственный обдув, то, что на­зывается «нечистый опыт».

Оригинальный выход нашли хитроумные японцы, предложив метод «падающего ящика». Камера-лифт с подвешенной каплей падала по направляющим вместе с включенным киноаппаратом. В камере, согласно зако­нам механики, возникало состояние невесомости для всех тел, в том числе и для газов, окружающих каплю. Восстанавливалась шаровая симметрия и чистота опы­та. Фотографии в падающем лифте показали строго сферический фронт пламени вокруг горящей капли вместо привычного огненного языка. В наше время такой опыт мог бы с успехом проводиться на спутнике.

Уместно вспомнить, что одним из первых «взвесил» каплю известный бельгийский физик и анатом Жозеф Плато. Его опыт стал классическим и часто демонстри­руется на лекциях. В прозрачный сосуд с водным рас­твором спирта вводят каплю не смешивающегося с ним масла. Концентрацию раствора подбирают так, чтобы уравнять плотности обеих жидкостей. Тогда сила тя­жести капли будет уравновешена архимедовой силой, и капля станет невесомой. Другими словами, в игре трех воздействующих на каплю сил: веса, гидростати­ческого давления и поверхностного натяжения — две первые взаимно уничтожаются. Капля независимо от диаметра неподвижно повисает в жидкости и приобре­тает строго шарообразную форму. Это обеспечивает си­ла поверхностного натяжения, всегда стремящаяся при­дать капле минимальную поверхность при заданном объеме. Кстати, сейчас возникла целая область гидро­динамики невесомости, важная для спутников и косми­ческих аппаратов, на борту которых всегда имеются жидкости различного рода и назначения.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука