Читаем Необычные изобретения. От Вселенной до атома полностью

20 сентября 1979 года Г. Бинниг и Г. Рорер зарегистрировали в Швейцарии заявку на сканирующий туннельный микроскоп (СТМ). В 1986 году был изготовлен первый атомно-силовой микроскоп (АСМ). Оба прибора, их теперь называют сканирующими зондовыми микроскопами (СЗМ), позволили не только «увидеть» материю на уровне отдельных атомов, но и переносить атомы с одного объекта на другой и даже двигать. Многие связывают начало эры нанотехнологии с созданием этих приборов. В СТМ иголка движется над объектом. Между ними создают разность потенциалов. Если под иголкой бугорок (атом) объекта, то ток между ними большой. Если ямка (межатомное расстояние) – ток маленький. Но для этого иголка и объект должны быть изготовлены из проводника. А если хочется посмотреть бугорки на изоляторе, то используют АСМ, в нем иголку закрепляют на плоской пружинке, которая может изгибаться, и тоже двигают ее над объектом. Над бугорком она поднимается, над ямкой опускается. На пружинке закреплено зеркало, на него светят лазерным лучом, зеркало его отклоняет, и по этому отклонению судят – бугорок (атом) или ямка («пустота») находится под кончиком иглы. В это трудно поверить. Когда появились первые изображения атомов, многие ученые и не поверили. А те, кто поверили, стали делать такие микроскопы и их продавать. Справедливости ради надо заметить, что к моменту создания зондовой микроскопии уже существовала высоковольтная электронная микроскопия, и она тоже «видела» наномир (см., например, [1]), но из-за сложности использования у нее все-таки ограниченная область применения. Конечно, зондовые микроскопы в первую очередь нужны для научных работ и расширяют границы познаваемого мира, но и просто увидеть, как устроен наномир – тоже очень интересно. Я знаю многих людей, которые пришли в сканирующую зондовую микроскопию после того, как они увидели изображения атомов. Так как эта книга посвящена необычным изобретениям, то вполне уместно ее завершить необычными картинами наномира, выполненными на необычных приборах (рис. 12.1–12.8 цв. вклейки). Многие представленные изображения цветные, хотя существует ли там цвет – большой вопрос [2].

Как мы уже отметили, получение изображения поверхности объекта на сканирующем зондовом микроскопе не является самоцелью, оно необходимо для более углубленных исследовании этого объекта. Для этого можно использовать методы цифровой обработки изображений. Эти методы позволяют находить более точные геометрические характеристики частиц, расположенных на поверхности, таких как: нанокластеры, микрокристаллиты, частицы коллоидной природы: вирусы, микробы, клеточные органеллы и т. п. Сущность одного из таких методов заключается в том, что при измерении параметров конкретной частицы исключают влияние соседних частиц на процесс измерения. Благодаря этому параметры измеряемой частицы оказываются ближе к истинным значениям. Подробнее этот метод описан в [3].

Но, помимо простой визуализации изображений, СЗМ способен воздействовать на материю на атомарном уровне. В 1989 году ученые из IBM Д. Эйглер и Э. Швейцер выложили из 35 атомов ксенона название своей корпорации. По сути, это достижение подтвердило тезис, что эра нанотехнологии началась с создания СЗМ, без которого немыслимо проникновение вглубь материи и развитие многих отраслей науки. Позже было визуализировано перемещение фермента по белковому основанию, описанное в предыдущей главе, функционирование бактериофага, рассмотренное в [4], и многое другое, о чем я предполагаю написать в будущих книгах.

Литература

1. Поглазов Б.Ф. Сборка биологических структур. – М.: Наука, 1970. – 156 с.

2. Быков В.А. Существует ли цвет в наномире // Наноиндустрия. – 2009. – № 4.

3. Патент RU2459251. Способ выделения локальных объектов на цифровых изображениях поверхности. 20.08.2012.

4. Соколов Д.Ю. Создание, оформление и защита изобретений (Практическое пособие для инженеров, ученых и патентоведов). – М.: ОАО ИНИЦ «Патент», 2013. – 206 с.

<p>Заключение</p>

Все изложенное в этой книге, я надеюсь, расширит кругозор людей разных возрастов и профессий. Изобретатели найдут в своих разработках новые объекты для патентования. Художники, в широком понимании этого слова, возможно, взглянут на свою работу под другим углом. Школьники и студенты увидят на опыте великих современников, что изобретательство – это интересное и полезное занятие. А если изобретателей станет больше, то сократится катастрофическое отставание нашей страны в области защиты интеллектуальной собственности, и постепенно мы начнем возвращать свое утраченное интеллектуальное лидерство.

Рис. 12.1. АСМ-изображение поливинилового спирта. Получено А. Серцовой. Московский текстильный университет

Рис. 12.2. АСМ-изображение лимфоцитов. Получено Ю.Ю. Кущиной и С.Н. Плесковой. Нижегородский государственный университет

Рис. 12.3. АСМ-изображение эритроцитов. Получено Еленой Дедковой. Кабардино-Балкарский государственный университет

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники