Но и на этом история не остановилась. В относительно недавнем январе 2019 года (первая публикация статьи – октябрь 2018) в выпуске The Journal of Physiology сообщается об удивительном феномене: авторам статьи удалось наблюдать передачу электрического сигнала между нейронами вообще в отсутствие синапсов – как химических, так и электрических… Сначала авторы просто регистрировали распространение активности в аксоне, а затем полностью перерезали его пополам, и стали постепенно раздвигать разрез. Сигнал всё равно распространялся. Только раздвинув края разреза на 400 микрон друг от друга, распространение сигнала удалось прекратить.
Так что точка в споре между «поварами» и «радистами» ещё не поставлена, наступило скорее перемирие, чем мир. У каждой стороны есть свой лауреат Нобелевской премии. И что очень важно, обе стороны спора правы (Правда, удобная позиция?).
А что если обе неправы?
[1] Скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях.
Новейшая история
Вторая половина XIX века была богата открытиями в области физиологии нервных волокон, в это время были сформулированы основные законы возбуждения и распространения нервных импульсов.
Эдуард Фридрих Вильгельм Пфлюгер
«Всё или ничего». Согласно закону Боудича (1840—1911), подпороговые раздражения не вызывают возбуждения («ничего»), при пороговых и надпороговых стимулах возбуждение сразу приобретает максимальную величину («всё») и уже не увеличивается при дальнейшем усилении раздражения. По этому закону функционируют и мышечные, и нервные волокна. [13]
Рисунок 14. Закон Боудича «Всё или ничего».
В 1922—1925 годах Эдгар Дуглас Эдриан воспользовавшись капиллярным электрометром и только что изобретённым ламповым усилителем Герберта Гассера смог записать электрический потенциал отдельных нервных волокон при физическом воздействии.
Случайное наблюдение, сделанное Эдрианом в процессе эксперимента в 1928 году, ещё раз доказало наличие электричества в нервных клетках. Эдриан рассказывал: – Я разместил электроды на зрительном нерве жабы в связи с некоторыми экспериментами с сетчаткой. В комнате было почти темно, и я был озадачен, услышав повторяющиеся шумы в громкоговорителе, подключённом к усилителю[1]. Шумы указывали на то, что имела место большая импульсная активность. Только когда я сравнил шумы с моими собственными
движениями по комнате, я понял, что нахожусь в поле зрения гла́за жабы, и что он сигнализирует о том, что я делаю [16].
Эдриан подтвердил, что нервы подчиняются принципу «все или ничего». Но он также обнаружил, что применительно к нервам закон «все ли ничего» имеет продолжение: амплитуда нервных импульсов действительно сохраняется одинаковой, но при этом – с ростом силы раздражения может формироваться серия нервных импульсов, и чем сильнее раздражитель, тем больше частота их следования. Вероятно, так обеспечивается градация интенсивности ощущений. «В связи с этим импульсация несёт гораздо большую информацию, чем просто сигнал о том, что возбуждение произошло», – писал Эдриан [16].
Кроме того, он обнаружил, что более сильный стимул активирует большее количество чувствительных волокон.
Тогда же сложилось и устойчивое представление о том, что сигналы возбуждений, приходящие на разные дендриты, суммируются в соме нервной клетки и в результате формируется исходящий сигнал в аксоне.
Однако, последние исследования нейробиологов из Израиля, опубликованные в 2018 году в научном издании Scientific Reports опровергают эту модель. Получены свидетельства того, что направление результирующего сигнала существенно может повлиять на реакцию нейрона. К примеру, слабый сигнал «слева» и примерно такой же «справа» нейрон не суммирует и не отзовётся выходным импульсом, но если сигнал с бо́льшей мощностью поступит с одной из сторон, то запустить реакцию нейрона может даже он один [17].