Многие учёные пытались исследовать механические волны в нервном волокне с точки зрения термодинамики и строить их математические модели на основе нелинейных одиночных волн – солитонов. Но с 2005 года после Томаса Хаймбурга и Андрю Д. Джексона больше не делалось попыток понять физическую суть явления.
Но иногда к исследованию вопроса подключаются другие учёные, не затронутые старыми спорами. Инженер Нунцзянь Тао (
Такая работа могла бы дать ответ на важный вопрос – действительно ли нейроны используют их для чего-то полезного.
Могут ли механические волны действительно влиять на маленькие белковые каналы?
Известно, что работа ионных каналов нестабильна и часто встречаются помехи: даже слабые тепловые колебания могут заставить их открыться или закрыться случайным образом. В недавних экспериментах показано, что каналы чувствительны и к механическим воздействиям на мембрану.
Специалисты по теории информации десятилетиями пытались объяснить, как мозгу удаётся стабильно работать, имея такие ненадёжные механизмы. Однако наличие механических волн может означать, что открытие и закрытие происходят упорядоченно. Такое вполне возможно. Если механические волны помогают открывать и закрывать ионные каналы, это может сильно изменить наши представления о нервной системе.
Но если не ПД, то что?
Авторы описанных выше гипотез рассматривали механическую волну в аксоне с точки зрения
А теперь, уважаемый читатель, давайте поговорим о том, о чём в нейробиологии говорить не принято.
Как в законе Ома связаны три физических величины: ток, напряжение и сопротивление (I=U/R), так же неразрывно связаны мембранный потенциал, концентрация ионов и осмотическое давление внутри клетки. Они представляют собой систему, которая всегда находится в состоянии равновесия. Изменение значения любого из этой троицы вызовет изменение остальных.
В 1884 году Анри Ле Шателье (
Ныне этот принцип носит имя Ле Шателье – Брауна:
если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.
Принцип применим к равновесию любой природы: механическому, тепловому, химическому, электрическому.
Изменения внешних условий изменяет равновесные концентрации веществ. В этом случае принято говорить о нарушении или смещении химического равновесия.
Ещё в 1908 году Нернст выявил зависимость между разностью потенциалов и ионной концентрацией. Уравнение Нернста позволяет предсказать максимальный рабочий потенциал, который может быть получен в результате электрохимического взаимодействия, при
В своё время именно по этой формуле Бернштейн теоретически рассчитал величину потенциала покоя для К+ совпавшую с экспериментально измеренным потенциалом, который составил около —70 мВ.
К сожалению Бернштейн, после публикации в 1912 году своей мембранной гипотезы прекратил дальнейшие исследования, что простительно – на тот момент ему исполнилось 70 лет. Что было тому причиной – возраст, надвигавшаяся Первая мировая война или отсутствие признания его гипотезы со стороны научного сообщества мы никогда не узна́ем.
Неизвестно и как развивались бы события продолжи он свою научную деятельность. История не знает сослагательного наклонения. Прошло время, и его последователи Ходжкин и Хаксли в 1938 году возвратились к исследованию мембранной теории, правда, несколько односторонне. Они сосредоточили своё внимание на двух элементах системы – электрическом потенциале и ионной концентрации, но игнорировали остальные – давление внутри клетки и температуру. Или не игнорировали, но приняли давление и температуру за неизменные условия среды.
Настало время восстановить справедливость, рассмотреть процесс возникновения и распространения с учётом всех составляющих.