Читаем Наука Единства полностью

Итак, простые геометрические паттерны, формирующиеся вибрациями звука (и высокочастотными вибрациями света), можно рассматривать в двух и трех измерениях; причем двумерные формы, такие как треугольник, квадрат или шестиугольник, обсуждаемые Хокинсом, нам знакомы больше, чем трехмерные формы, открытые Фуллером и Дженни. Хотя к настоящему моменту мы уже наблюдали, как эти геометрии работают на планетах. Очень важно: вибрационные геометрии могут увеличиваться и уменьшаться в размерах, и эти простые движения организовываются и контролируются видимыми геометрическими структурами. Когда мы начинаем помещать формы одну в другую, они становятся “загнездованными”, причем каждая последующая форма гармонически растет и становится больше, чем предыдущая. По мере продолжения книги, мы расскажем об этом больше. Геометрия “сферы внутри сферы” уже наблюдалась в различных экспериментах, и сейчас следует ожидать, что внутри расширяющихся сфер существуют различные геометрические гармонии.

Самый простой способ смоделировать геометрическое расширение одной формы в другую — это проследить движение узлов относительно друг друга. Мы помним, что на Земле Спилхаус и другие назвали расширяющиеся геометрические движения “радиальными” или “спиралевидными”. Самый простой способ изобразить движение от узла к узлу между двумя различными формами — спиралевидная линия, которую Ра называет “спиралевидной линией света”. Такие спирали включают Спираль Фибоначчи или “Золотое Сечение” и спирали, образованные квадратными корнями из двух, трех и пяти. Сейчас с помощью математики мы продемонстрируем, что эти спирали напрямую связаны с музыкальными частотами.

13.5.1 СПИРАЛЬ ФИ

Самое главное и самое важное из всех учений о спиралях известно как “Золотое Сечение”, Спираль Фибоначчи или спираль “фи”. Чтобы лучше понять эту спираль, мы начнем с гармонического вибрационного способа, который создается суммированием чисел. По существу, мы убедимся, что каждое новое число — это сумма двух предыдущих. Мы начинаем с единицы, прибавляем к ней единицу и получаем два. Затем мы берем два, складываем его с предыдущим числом, единицей, и получаем три. Затем мы берем три, складываем с предыдущим числом, два, и получаем пять. Продолжаем:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89….

Итак, числа продолжают возрастать простым гармоническим способом, где каждое новое число представляет собой сумму двух предыдущих. Если мы разделим пары чисел друг на друга, то на ранних стадиях увидим все общие диатонические музыкальные отношения, открытые Пифагором, такие как 3/2, 5/3, 8/5, 13/8 и 21/13. Это не должно удивлять, ибо музыка — это вибрационное движение, а техника суммирования, используемая в отношении фи, тоже является формой вибрации. Элегантная природа этой вибрации легко видна на рисунке “спирали фи”, приведенном ниже. Чтобы лучше понять, как спираль работает с Платоновыми Телами, ее следует рассматривать как трехмерный объект, как будто она наворачивается вокруг конуса с вершиной в точке G и нижней точкой А. Такой вид трехмерной спиралевидной формы называется “конической спиралью”.

Спираль Фибоначчи или “фи” и геометрические дополнения

Хотя на ранних этапах числовые серии “фи” будут образовывать между собой музыкальные отношения, по мере роста пары чисел, отношения между ними становятся все более и более одинаковыми, и процесс роста стабилизируется. По мере продолжения процесса, каждая пара чисел в серии будет делиться друг на друга и образовывать одно и то же число, а это значит, что отношение между всеми числами остается постоянным. Именно по этой причине само отношение называется “константой”, поскольку это всегда будет одно и то же число (и так до бесконечности), равное:

1,618033988749894484820….

Еще один интересный факт: мы можем начать с любых двух чисел, не смотря на их различие, и складывать их, используя простую приведенную выше формулу. Не смотря на то, какими разными они могут быть, через небольшой промежуток времени, мы снова получим отношение между ними, равное константе “фи”. Эта концепция вдохновила многие поколения математиков, музыкантов, ученых и философов, поскольку загадочно появляется под многими разными обличиями, включая пропорции роста растений, животных и человеческих существ. Как мы говорили, музыкальные отношения “фи” создают структуру простой геометрии в двух и трех измерениях, которая, как мы сейчас знаем, представляет собой форму вибрации. Это ясно показывает вышеприведенный рисунок, ибо, пока спираль продолжает расширяться, мы можем видеть шесть равнобедренных треугольников идентичных пропорций. Величина отношения между каждыми из двух треугольников будет константой “фи” или 1,618… приведенной выше.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
1917 год. Распад
1917 год. Распад

Фундаментальный труд российского историка О. Р. Айрапетова об участии Российской империи в Первой мировой войне является попыткой объединить анализ внешней, военной, внутренней и экономической политики Российской империи в 1914–1917 годов (до Февральской революции 1917 г.) с учетом предвоенного периода, особенности которого предопределили развитие и формы внешне– и внутриполитических конфликтов в погибшей в 1917 году стране.В четвертом, заключительном томе "1917. Распад" повествуется о взаимосвязи военных и революционных событий в России начала XX века, анализируются результаты свержения монархии и прихода к власти большевиков, повлиявшие на исход и последствия войны.

Олег Рудольфович Айрапетов

Военная документалистика и аналитика / История / Военная документалистика / Образование и наука / Документальное