Читаем Научные исследования полностью

Решение: Представим треугольник в виде М3, а круг – Mn, тогда согласно условию М3

Ответ: Дети могут из круга вырезать новые треугольники.

Теорема 6. N-е количество прямоугольников Т будет представлять собой квадрат P, если прямоугольники Tn имеют необходимый размер R, вычислить который позволяют данные квадрата.

Тn=P, если R=P-Tn=0

Доказательство:

Пусть T1+T2+…+Tn=P, то R=P-T1-T2-…-Tn=0. Для того чтобы N-е количество прямоугольников Т представляло собой квадрат P, необходимо определить размер R. Объединим две формулы в одну R=P-T1-T2-…-Tn=T1+T2+…+Tn-T1-T2-…-Tn=0 и получим равенство прямоугольников Tn с квадратом.

Пример. Ребята имели 5 машинок, которые хотели поместить в коробку, имеющую квадратное дно. Сколько машинок поместится в коробку?

Решение: Т=5, P – квадратное дно, R-?

Используя общую формулу R=P-Tn, получим R=P-5. То есть размер пяти прямоугольников будет равен размеру квадрата.

Ответ: Чтобы вычислить количество машинок, необходимо знать размер коробок и машинок.

Теорема 7. Увеличение фигуры F с точностью пропорционально ее центра, меняет форму фигуры на P. Радиус R в любом месте может иметь и другое значение R1. От радиуса R зависит неизменность фигуры.

F=F, но F*Ri=P

Доказательство:

Пусть фигура F – круг. Увеличивая радиус R пропорционально центра круга, нужно учитывать, что радиус может измениться. Следовательно, F*Ri=P, где Р – это уже не круг.

Пример. Мальчик на дороге нарисовал мелом круг, затем вокруг первого круга второй круг, но получился овал. Почему у мальчика получился овал, а не круг?

Решение: F круг, P-овал, R-?

Используя общую формулу F*Ri=P, получим Ri=P/F. Когда мальчик рисовал круг, его радиус был непостоянен.

Ответ: У мальчика получился овал, а не круг, потому что он не смог увеличить радиус круга с одинаковой точностью от центра.

Теорема 8. Множество точек Хn образует фигуру P, которая определяет их расположение. На расположение точек оказывают влияние и разные факторы f. Таким образом точки Хn под влиянием факторов f образуют ту или иную фигуру P.

Х1*f+Х2*f+…+Хn*f=P

Доказательство:

Пусть мы имеем две точки Х1 и Х2, на одну из точек повлиял фактор f, тогда мы получим фигуру Р согласно формуле Х1*f+Х2 =P.

Пример. Работник имел 130 кирпичей для строительства стены. 1 кирпича он недосчитался, 2 – у него раскололись. Получилось ли у работника построить стену, если для ее строительства требовалось 100 кирпичей.

Решение: Х1=130, Х2=-1 (недосчет), Х3=-2 (раскололись), Р=?

Используя формулу Х1*f+Х2*f+…+Хn*f=P, получим 130+(-1)*недосчет+(-2)*раскололись=127. Известно, что для строительства стены требовалось 100 кирпичей. Значит 127-100=27. Стена будет построена, и 27 кирпичей останутся лишними.

Ответ: У работника получилось построить стену.

Теорема 9. Мы не можем доказать равенство фигур А=В по признакам i. Любой признак i может оказаться ошибочным.

Аi=Вi, где i – число непостоянное

Доказательство: Пусть фигуры А, В имеют два признака – 2*i, тогда А2*i =В2*i. Из-за непостоянности числа i любой из признаков может быть ошибочным i*0. Получаем А2*i =В2*i*0, А2*i =0. Следовательно, А=0 и не равно В.

Пример. Мальчику подарили две одинаковых игрушечных машины, но одна машина сломалась. После ремонта у сломанной машины изменился вид. Сколько у мальчика было одинаковых машин?

Решение: А – рабочая машина, В – машина после ремонта, i*1 – рабочая, i*0 после ремонта. Используя формулу Аi=Вi, получим Аi*1=Вi*0 и Аi*1=0, то есть А – машина без ремонта.

Ответ: У мальчика были две разных рабочих машины.

Теорема 10. Расстояние I, пройденное от предметов An, зависит от размера предметов An*R.

Перейти на страницу:

Похожие книги

Человек 2050
Человек 2050

Эта книга расскажет о научных и социальных секретах – тайнах, которые на самом деле давно лежат на поверхности. Как в 1960-х годах заговор прервал социалистический эксперимент, находившийся на своём пике, и Россия начала разворот к архаичному и дикому капитализму? В чем ошибался Римский Клуб, и что можно противопоставить обществу "золотого миллиарда"? Каким должен быть человек будущего и каким он не сможет стать? Станет ли человек аватаром – мёртвой цифровой тенью своего былого величия или останется образом Бога, и что для этого нужно сделать? Наконец, насколько мы, люди, хорошо знаем окружающий мир, чтобы утверждать, что мы зашли в тупик?Эта книга должна воодушевить и заставить задуматься любого пытливого читателя.

Евгений Львович Именитов

Альтернативные науки и научные теории / Научно-популярная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Кризис
Кризис

Генри Киссинджер – американский государственный деятель, дипломат и эксперт в области международной политики, занимал должности советника американского президента по национальной безопасности в 1969—1975 годах и государственного секретаря США с 1973 по 1977 год. Лауреат Нобелевской премии мира за 1973 год, Киссинджер – один из самых авторитетных политологов в мире.Во время работы доктора Киссинджера в администрации президента Ричарда Никсона велась регулярная распечатка стенограмм телефонных разговоров. С 2001 года стенограммы, хранящиеся в Национальном архиве США, стали общедоступными.Эти записи и комментарии к ним Генри Киссинджера передают атмосферу, в которой принимались важные решения, и характер отношений, на которых строилась американская политика.В книге обсуждаются два кризиса – арабо-израильская война на Ближнем Востоке в октябре 1973 года и окончательный уход из Вьетнама в 1975 году.В формате PDF A4 сохранен издательский макет книги.

Антон Цвицинский , Генри Киссинджер , Джаред Мейсон Даймонд , Руслан Паушу , Эл Соло

Фантастика / Экономика / Современная русская и зарубежная проза / Научно-популярная литература / Образовательная литература