Однако у гидрид-иона (протон с двумя электронами) нет внутренних оболочек. Это и есть то самое «принципиально важное», что отличает ионные гидриды по сжимаемости от всех других кристаллических тел. Итак, в ионных гидридах остов кристаллической решетки сложен из гидрид-ионов, в которых отсутствуют внутренние электронные оболочки, и поэтому ионные гидриды должны обладать аномально высокой сжимаемостью. Это полностью подтверждается экспериментальными данными (см. рис. 6). И буквально «бросается в глаза» то, что градиент сжимаемости гидрида калия остается постоянным (постоянно высоким!) вплоть до давлений в 250 кбар (далее к сожалению нет данных).
Кроме того, при одной атмосфере плотность гидрида калия в 1,7 раза больше плотности калия-металла. Казалось бы, парадоксальное явление, металл поглощает сотни объемов водорода на один свой объем и при этом не только не разбухает, а, напротив, существенно уплотняется. И это уплотнение происходит не за счет добавления атомов водорода в кристаллическую решетку, а в связи с уменьшением расстояний между атомами металла в решетке гидрида в сравнении с исходной металлической. Причина данного явления в электростатическом (катионно-анионном) сжатии решетки ионных гидридов, которое деформирует легко сжимаемые гидрид-анионы, сокращая тем самым расстояния между центрами металлических атомов.
Рис. 7. Характер трансформации кристаллической решётки ионного гидрида в условиях сверхвысокого давления: знаками «−» помечены гидрид-анионы, знаками «+» помечены катионы металлов.
Аномальная сжимаемость гидрид-иона позволяет предположить, что в условиях мегабарного диапазона давлений гидрид-ионы будут иметь столь малые размеры, что плотнейшую упаковку ионного остова решетки будут создавать катионы металла, тогда как многократно сжатые гидрид-ионы займут пустоты (октаэдрические, тетраэдрические) между ними (рис. 7). Образование такой конструкции означает достижение предела сжимаемости ионных гидридов. При переходе Mg → Mg2+ радиус уменьшается от 1,6 до 0,66 ангстрема; у кремния, при Si → Si2+, от 1,34 до 0,55 ангстрема. При этих значениях плотность магния и кремния в виде ионных гидридов может увеличиться в 14 раз (это в пределе и в условиях сверхвысоких давлений).
В стандартных условиях плотности кремния и магния — 2,33 г/см3 и 1,74 г/см3. Если эти значения умножить на 14, то получим плотности (соответственно 32,62 г/см3 и 24,36 г/см3), превышающие плотность внутреннего ядра в центре планеты (12,46 г/см3). Это показывает, что в рамках нашей модели Земли с гидридным внутренним ядром высокая плотность последнего не представляется неразрешимой проблемой. Скорее проблема в том, что внутреннее ядро имеет недостаточно высокую плотность.
В таблице № 2 приведен список элементов, которые уплотняются в виде гидридов в стандартных условиях (при комнатной температуре и атмосферном давлении). Приведенные здесь гидриды принято называть ионными. Однако расчеты показывают, что даже в солеобразных гидридах щелочных металлов тип связи имеет промежуточный ионно-ковалентный характер и связь является ионной лишь на 30–45 %. Наиболее ионным из перечисленных является гидрид цезия. У цезия максимальная разница с водородом по электроотрицательности, и весьма показательно, что именно он обладает максимальным уплотнением в виде гидрида (при атмосферном давлении).
Таблица № 2. Уплотнение металлов в виде ионных гидридов при комнатной температуре и атмосферном давлении.
Вместе с тем, по нашей оценке, в составе планеты резко преобладают кремний, магний и железо. Эти элементы мало отличаются от водорода по электроотрицательности, и поэтому их гидриды имеют ковалентный тип химической связи и соответственно меньшую плотность в сравнении с плотностью металлов (отсутствует катионно-анионное сжатие решетки). Однако это при давлении в одну атмосферу. Теперь мы знаем об аномально высокой сжимаемости гидрид-анион а, и знаем так же, что в условиях повышения давления все большую устойчивость приобретают наиболее плотные фазы. Отсюда однозначный вывод: в условиях повышения давления характер химической связи в гидридах должен становится все более ионным, с тем чтобы могла реализоваться по максимуму потенциальная способность гидрид-иона к уплотнению.