Для ускоренной системы отсчета К’ это следует прямо из принципа Галилея. Для покоящейся в однородном гравитационном поле системы отсчета К это следует из того опытного факта, что все тела в таком поле ускоряются равномерно и одинаково сильно. Этот опытный факт об одинаковом ускорении падения всех падающих в гравитационном поле тел является одним из наиболее общих фактов, установленных нами из наблюдений. Несмотря на это, закон этот не нашел еще отражения в основах нашей физической картины мира.
Однако мы придем к удовлетворительной интерпретации этого опытного закона, если допустим, что системы отсчета К и К’ физически в точности равноправны, другими словами, если мы допустим, что систему К равным образом можно рассматривать как систему, находящуюся в пространстве, свободном от поля тяжести, но при этом мы должны рассматривать К как равномерно ускоренную систему. При таком подходе нельзя говорить об абсолютном ускорении координатной системы, так же как нельзя в обычной теории относительности говорить об абсолютной скорости системы[11]. С этой точки зрения одинаковое ускорение всех падающих тел в гравитационном поле очевидно.
Теоретическая модель Эйнштейна показывает, что время и пространство неразделимы. По Ньютону, время никак не зависело от пространства и было подобно железной дороге, уходившей на бесконечность в обе стороны. Однако в понимании Эйнштейна время и пространство связаны неразрывно.
Невозможно искривить пространство, не затронув время. Значит, у времени есть форма. Тем не менее время, похоже, идет лишь в одном направлении.
До тех пор пока мы ограничиваемся чисто механическими явлениями, для которых справедлива механика Ньютона, мы уверены в равноценности систем К и К’. Однако представление наше будет достаточно глубоким только в том случае, если системы К и К’ окажутся равноценными относительно всех физических явлений, т. е. если законы природы по отношению к системе К полностью совпадут с законами природы по отношению к системе К’. Приняв это, мы получаем принцип, имеющий большое эвристическое значение, если он действительно справедлив. Действительно, с помощью теоретического изучения явлений, протекающих относительно равномерно ускоренной координатной системы, можно получить представление о ходе явлений в однородном гравитационном поле. Далее будет прежде всего показано, каким образом с точки зрения обычной теории относительности наша гипотеза приобретает значительную долю вероятности.
§ 2. О тяжести энергииТеория относительности привела к выводу о росте инертной массы тела с увеличением содержащейся в нем энергии. Так, если приращение энергии есть Е, то приращение инертной массы составляет Е/с2, где с – скорость света. Однако возникает вопрос: соответствует ли такому приращению инертной массы также приращение тяготеющей массы? Если нет, то тогда тело в одном и том же поле тяжести падало бы с разным ускорением, зависящим от энергии самого тела. Такой удовлетворительный результат теории относительности, согласно которому закон сохранения массы содержится в законе сохранения энергии, оказался бы несправедливым, хотя в этом случае для инертной массы и нужно было бы отбросить закон сохранения массы в его старой формулировке, но для тяготеющей массы он остался бы в силе.
Такой вывод очень маловероятен. С другой стороны, обычная теория относительности не дает ни одного аргумента, из которого можно было бы заключить, что вес тела зависит от содержащейся в нем энергии. Однако мы покажем, что из нашей гипотезы об эквивалентности систем отсчета К и К’ с необходимостью вытекает тяжесть энергии.
Итак, пусть две физические системы тел S1 и S2, снабженные измерительными приборами, расположены на оси Z системы отсчета К на расстоянии h друг от друга[12] таким образом, что гравитационный потенциал в том месте, где находится система S2, на γh больше гравитационного потенциала в месте нахождения S1. Далее, пусть из S2 посылается в S1 определенное количество энергии Е в виде излучения и пусть при этом количество энергии измеряется с помощью приборов, которые, будучи установлены в одном и том же месте систем z и там друг с другом сравнены, оказались бы совершенно одинаковыми.