Сагредо. Подобное же приходилось не раз наблюдать и мне при занятиях музыкой как для удовольствия, так и для пользы. Я долгое время находился в недоумении по поводу формы созвучий, так как мне казались недостаточными те положения и объяснения, которые обычно даются авторами сочинений о музыке. Они говорят, что диапазон, или октава, стоит в отношении двойном, а диапента, или, как мы говорим, квинта, – в отношении полуторном к основному тону и т. д.; действительно, если натянутая на монохорде струна дает основной тон, то, заставляя звучать половину струны, разделив ее пополам посредством поставленной в середине дощечки, мы получим октаву; если же мы поставим дощечку на одну треть до конца струны и, придержав меньшую часть, заставим звучать часть из двух третей струны, то получим квинту. Поэтому говорят, что в октаве созвучие состоит в отношении двух к одному, а в квинте – в отношении трех к двум. Скажу, что это рассуждение казалось мне недостаточным для того, чтобы утверждать, будто двойное и полуторное отношения являются естественными формами для диапазона и диапенты, и вот по каким основаниям. Мы можем повысить тон струны тремя способами: укорачиванием, вытягиванием или, скажем, большим натяжением и, наконец, утончением. Сохраняя одну и ту же толщину и степень натяжения, мы должны, если хотим получить октаву, разделить ее подпоркою пополам и сперва заставить звучать всю струну, а затем половину ее. Но если, сохраняя ту же толщину и длину, мы захотим получить октаву посредством большего натяжения струны, то недостаточно будет тянуть ее силою вдвое большей; для этого понадобится сила в четыре раза большая, так что если струна была первоначально натянута грузом, например в один фунт, то, чтобы получить октаву, необходимо будет подвесить груз в четыре фунта.
Наконец, чтобы получить октаву, сохраняя ту же длину и степень натяжения, надо взять более тонкую струну, которая составит по толщине четвертую часть первоначальной толстой струны. То, что я говорю здесь об октаве, т. е. о зависимости ее от степени натяжения и от толщины струны и об отношении ее как двух к одному, выводимом из отношения длины струн, одинаково применимо и ко всяким другим музыкальным интервалам.
Если опустить камертон в воду, становится понятно, насколько мощны звуковые колебания.
Поэтому, если отношение, найденное на основании сравнения длины, равно полутора, поскольку для получения квинты мы заставляем звучать сначала всю, а затем две трети струны, то для того чтобы получить такое созвучие посредством большего натяжения или утончения струны, отношение трех к двум следует возвести в квадрат, что дает отношение девяти к четырем; таким образом, если в первом случае первоначальный груз, натягивающий струну, равнялся четырем фунтам, то придется взять новый груз не в шесть, а в девять фунтов; во втором же случае придется подобрать струны так, чтобы толщина одной из них относилась к толщине другой, как девять к четырем. После таких точных опытов мне показалось, что нет никаких оснований для утверждения почтенных философов об октаве, будто она имеет форму отношения одного к двум, а не одного к четырем; равным образом и квинта скорее соответствует отношению четырех к девяти, чем двух к трем. Так как сосчитать колебания струны, которая, давая звук, вибрирует с большою быстротою, совершенно невозможно, то я долго оставался в сомнении, действительно ли верно, что струна, звучащая на октаву выше, делает за то же время в два раза больше колебаний, чем струна, дающая основной более низкий тон, пока опыт с дрожащим и звучащим кубком и постоянными водяными волнами не показал мне, что всякий раз, как звук повышается на октаву, тотчас же рождаются новые меньшие волны, которые с величайшей точностью и правильностью разбивают каждую из прежних волн надвое.
Сальвиати. Это прекрасный опыт, дающий возможность различать одну от другой волны, порождаемые дрожанием звучащего тела; это – те же волны, которые, распространяясь в воздухе, щекочут барабанную перепонку в нашем ухе, и это в нашей душе становится звуком. Так как явление, наблюдаемое с водою, продолжается только до тех пор, пока мы продолжаем водить по кубку пальцем, да и в этот период времени оно непостоянно, ибо волны попеременно и рождаются и расходятся, то, конечно, вы согласитесь, что было бы хорошо, если бы можно было заставить колебания длиться продолжительное время, скажем, месяцы и годы; это дало бы нам возможность их измерять и удобно считать.
Сагредо. Конечно, я бы весьма высоко оценил такое изобретение.