Биологических растворителей много. Но большинство из них находится в жидком состоянии при температурах, когда вода либо замерзает, либо целиком обращается в пар. Конечно, в таких условиях земная жизнь невозможна. Но у аммиака точка замерзания равна –77,7 °C. Когда вся вода превратится в лед, аммиак может образовывать океаны. Так же и растворители с высокой точкой кипения могут заменять воду при температурах, когда вода может существовать только в состоянии пара. Она находится в атмосферном газе или вообще убегает в космическое пространство, если находится очень высоко. Это происходит тем легче, чем меньше масса планеты, то есть чем меньше сила гравитационного притяжения. Отметим, что диссоциация воды (разрыв молекулы на атомы) происходит в результате действия коротковолнового ультрафиолетового излучения Солнца.
Если на планете высокая температура, то условия для жизни на ней будут плохими, потому что при высоких температурах происходит разрыв углеродных связей. Собственно, любая химическая реакция с увеличением температуры ускоряется. Причем очень сильно. На каждые 10 °C скорость химических реакций увеличивается в 2–3 раза. Если же температура увеличится от 0 до 100 °C, то скорость реакций увеличится не менее чем в 1000 раз. Ясно, что при этом лабильные органические молекулы разрушаются или же вступают во взрывную реакцию. Это может происходить очень эффектно. Например, на той стороне Меркурия, которая обращена к Солнцу, можно было бы взорвать мост при помощи глюкозы. Справедливо и обратное. Многие применяемые у нас взрывчатки в условиях очень низких температур являются простыми органическими соединениями. Поэтому в интересах безопасности большие заряды взрывчатки (например, тысячекилограммовые бомбы) лучше держать при низких температурах. Так и поступали во время Второй мировой войны.
Атомный вес также играет важную роль. Если он увеличивается, то химическая активность элемента (вещества) уменьшается. Это и понятно. Чем тяжелее частица, тем она ленивее в смысле химической активности. Большие тела движутся медленно, зато при этом происходит компенсация роста температуры. Поэтому более тяжелые атомы с той же валентностью ведут себя при высоких температурах почти так же, как и легкие атомы (их аналоги) при низких температурах. Отсюда следует важный для проблемы жизни вывод: одни атомы, более легкие, могут быть заменены другими, более тяжелыми. Более тяжелые атомы смогут справиться с высокими температурами. Так, углерод С может быть замещен более тяжелым кремнием Si. У них одинаковые свойства, поскольку они находятся в IV группе таблицы Менделеева. В V группе азот N может быть заменен фосфором Р. В VI группе кислород О может быть заменен более тяжелой серой S. Значит, если в земных условиях в жизненных процессах участвуют более легкие указанные элементы, то в более высокотемпературных условиях их могут заменить указанные более тяжелые элементы. Так жизнь может справиться с высокой температурой в неземных условиях. Более того, даже в земных условиях сера иногда замещает в органических соединениях кислород. Подобным образом в обычных органических структурах встречается кремний.
Что касается кремния, то этот элемент образует цепочки, как и углерод. Поэтому специалисты серьезно обсуждают идею высокотемпературной жизни, которая могла бы быть основана на кремнии. Главное, что требуется от заменителей углеродной химии, это то, чтобы они содержали большие, обязательно лабильные молекулы, которые способны выполнять структурные и функциональные обязанности наших органических молекул, но в иных планетных условиях. Конечно, их структура может быть весьма различной.
Рассмотрим подробнее возможности жизни при низких температурах. Если температура не очень низкая, то для этих условий имеются несколько подходящих растворителей, которые могут заменить воду. Каждому из этих растворителей можно подобрать систему аналогов органических соединений. Одним из таких растворителей, как уже говорилось, является сероводород H2S. Его температура замерзания равна –85,6 °C, кипит он при атмосферном давлении при температуре — 60,75 °C. Скрытая теплота испарения у него низкая. При низких атмосферных давлениях все эти показатели не очень благоприятны для жизни. Но для планет с большой массой, которые имеют мощные атмосферы, а значит, и большую гравитационную силу притяжения, этот вариант с сероводородом ученые не исключают. Примером такой планеты является Юпитер. Имеются и другие плане ты-гиганты.