Хотя в астрономии используются и другие координаты, описанные нами системы наиболее популярны. Осталось ответить на последний вопрос: как перевести координаты из одной системы в другую? Заинтересованный читатель найдет описание всех необходимых преобразований в приложении.
* * *
МОДЕЛЬ ЭКСПЕРИМЕНТА ФУКО
Предлагаем читателю провести простой эксперимент. Возьмем круглую коробку и приклеим на нее лист плотного картона или фанеры, на котором закрепим небольшую раму в форме футбольных ворот, как показано на рисунке. Поместим в угол листа куклу, которая будет играть роль наблюдателя. Привяжем к горизонтальной планке рамы нить, на которой закрепим грузило.
Отведем получившийся маятник в сторону и отпустим. Маятник будет колебаться параллельно одной из стен комнаты, в которой мы находимся. Если мы начнем плавно вращать лист фанеры вместе с круглой коробкой, то увидим, что рама и кукла начнут смещаться относительно стены комнаты, но плоскость колебаний маятника будет по-прежнему параллельна стене.
Если мы представим себя в роли куклы, то увидим, что маятник движется относительно пола, но при этом мы не сможем ощутить движение коробки и рамы, на которой он закреплен. Аналогично, когда мы наблюдаем за маятником в музее, то нам кажется, что плоскость его колебаний смещается, однако на самом деле смещаемся мы сами вместе со зданием музея и всей Землей.
* * *
Определить углы, указывающие положение любого астрономического объекта, сравнительно просто. По сути, эта система координат ничем не отличается от той, что используют игроки в морской бой. По-настоящему трудная задача, о которой мы упомянули в начале главы, заключается в определении расстояния до наблюдаемого небесного тела. Существуют особые методы определения расстояний, в которых учитываются физические свойства рассматриваемых объектов. Так как мы говорим о математике в астрономии, мы опишем только один метод, применимый к разным объектам, который часто используется в астрономии и заключается в измерении расстояний при помощи параллакса.
В похожей ситуации оказываются и водители, двигаясь задним ходом: в зависимости от того, куда водитель повернет голову, он увидит дорогу по-разному. Рассмотрим фонарь, стоящий на тротуаре. Если мы посмотрим на него справа, то увидим его, к примеру, в определенном месте на фасаде здания. Если же мы посмотрим на фонарь слева, то увидим, как он сместится в сторону по сравнению с тем, что мы видели раньше.
Рассмотрим применение параллакса в астрономии. Как показано на рисунке, положение близкой к нам звезды