Читаем Музыка сфер полностью

Затмения помогли решить еще одну задачу, связанную с определением долготы. В Северном полушарии для определения широты проще всего измерить высоту Полярной звезды над горизонтом. Этот метод был известен морякам, и они, зная диаметр Земли, с легкостью вычисляли расстояния в направлении север — юг. Однако задачу о вычислении долготы, то есть расстояний в направлении запад — восток, не удавалось решить на протяжении нескольких веков. Помогло лунное затмение, которое наблюдал Александр Македонский в Индии. Вернувшись из похода, он узнал, что в Греции затмение наблюдалось за несколько часов до заката. Так как Солнце в Греции заходит несколькими часами позже, чем в Индии, стало понятно, на сколько градусов Индия отстоит от Греции. Таким образом расстояние до Индии удалось выразить в единицах долготы.

Задача об определении долготы и расстояний запад — восток не теряла актуальности на протяжении многих столетий. Даже после открытия Америки определить точное расстояние, к примеру, до Мексики было невозможно. Для ответа на вопрос требовались точные часы, однако их в то время еще не существовало. Гюйгенс изобрел часы с маятником, но использовать их на корабле и гарантировать их точность посреди бурного моря не мог никто. И вновь решить задачу помогли затмения — на этот раз затмения лун Юпитера, открытых Галилеем. Сам ученый предложил использовать затмения лун Юпитера в качестве астрономических часов, которые можно одновременно наблюдать в разных странах. Момент времени, когда луна внезапно скрывается из вида, уходя в тень Юпитера, наступает одновременно в Европе и Мексике. Таким образом, метод Галилея позволял определять время с точностью до минуты. Однако задача о долготе была окончательно решена только с появлением точных механических часов.

Наблюдения за астрономическими часами, описанными Галилеем, начал Джованни Доменико Кассини из Парижской обсерватории. Однако при уточнении результатов наблюдений возникли некоторые трудности. Временной интервал между двумя затмениями отличался примерно на 15 минут. Молодой датский ученый Рёмер, ассистент Кассини, объяснил, что свет достигает Земли за разное время в зависимости от ее положения на орбите, так как Земля не всегда находится на одном и том же расстоянии от Юпитера. Одновременно с этим Рёмер вывел метод измерения скорости света.

Согласно ньютоновским законам тяготения, сила притяжения Солнца может вызывать отклонение лучей света далеких звезд. Величина этого отклонения составляла 0,875 секунды дуги. Однако согласно теории относительности Эйнштейна отклонение было в два раза больше, и это подтвердил сэр Артур Стэнли Эддингтон, измерив отклонение лучей во время солнечного затмения в мае 1919 года: он получил результат, равный 1,98 секунды дуги. С еще большей точностью подтвердило теорию Эйнштейна затмение квазара Солнцем в 1987 году, во время которого с помощью интерферометрии было измерено отклонение лучей квазара. Теория относительности была подтверждена с погрешностью в 0,1 %.

Если рассматривать термин «затмение» в более общем смысле, как «перекрытие», то можно утверждать, что эти явления играют важную роль в научных исследованиях. Один из способов обнаружить во Вселенной небесные тела, в частности коричневые карлики, которые излучают слишком тусклый свет, чтобы его можно было увидеть, заключается в использовании эффекта микролинзы, наблюдаемого в момент, когда перед коричневым карликом проходит другая звезда. Свет карликовой звезды отклоняется и фокусируется на оптической оси гравитационной линзы.

В результате в течение короткого промежутка времени наблюдается яркая вспышка, по которой и можно обнаружить звезду. Галактики и скопления галактик, имеющие огромную массу, искривляют свет других небесных тел. С 1979 года, когда была обнаружена первая гравитационная линза, эти объекты остаются предметом множества исследований.

В 1912 году Эйнштейн в одной из заметок предсказал этот эффект, однако не опубликовал его, сочтя малозначимым. Один из друзей ученого напоминал ему об этом эффекте снова и снова, и в 1936 году Эйнштейн наконец-то опубликовал свою заметку, чтобы «порадовать бедного мальчика», а сегодня гравитационные линзы являются одним из важных методов астрономических исследований.

Гравитационные линзы: не затемняют, а увеличивают

В действительности Эйнштейн предсказал существование гравитационных линз, то есть явления, при котором звезда, расположенная ближе к нам, способна увеличивать изображение более далекой звезды. Однако сам ученый не верил, что гравитационные линзы когда-либо можно будет увидеть, и счел эту гипотезу слишком маловероятной. Современные астрономы с помощью гравитационных линз наблюдают за далекими уголками Вселенной. Сам космос дает им в руки мощнейшие телескопы, которые позволяют заглянуть очень далеко в пространство и время. Изучение гравитационных линз все еще можно считать относительно молодым разделом астрономии.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги