Читаем Можно ли исчерпать энергию, которой питается сердце? (СИ) полностью

Можно ли исчерпать энергию, которой питается сердце? (СИ)

Мария Григорьевна Виноградова

Самиздат, сетевая литература18+
<p>М. Г. Виноградова, Н. Н. Скопич</p><p>Можно ли исчерпать энергию, которой питается сердце?</p>

Для того, чтобы понять энергетическую причину работы сердца, надо проникнуть на более глубинный уровень, нежели клеточный уровень биохимических процессов живой ткани: а именно — на атомный уровень. Новые аспекты в понимании природы атома оказываются связанными с физическими процессами в мышце сердца и выявляются как обусловленные происхождением Земли — формированием её вещества из сброшенной Юпитерианской оболочки / 1-13/. В результате Юпитерианского звёздного синтеза Земля как его планетное детище оказалась снабжённой биогенным углеродом и межмолекулярными связями особого свойства — водородными связями. Водородные связи как таковые были открыты в 80-х годах Х1Х века химиками М.А. Ильинским и Н.Н. Бекетовым. Ими было обнаружено, что водородные связи слабее ковалентных молекулярных связей, но сильнее обычного притяжения молекул друг к другу. Позднее было показано, что водородным связям дана особая роль именно в биологических тканях, их функциональным особенностям, например, способностью изменять и восстанавливать форму и объём сформированных из них органов. Для мышечных тканей способность к сокращению является главным свойством. Речь, прежде всего, идёт о биологических тканях с пептидной связью HCON водорода, углерода, кислорода и азота. Белок живых тканей представляет собой биополимер полипептид, содержащий сотни или тысячи аминокислотных звеньев. Аминокислотные цепи в фибриллярном белке обычно находятся в виде винтовых спиралей, ориентированных параллельно друг другу в кручёной структуре, за счёт чего она может менять свой объём [2, с. 483]. В мышечных тканях различают три типа: скелетную, гладкую и сердечную. Последняя состоит из миофибрилл с белковыми нитями миозина и актина. Посмотрим на характерную структуру нити мышечных белков, приводимую по данным американских авторов У. Слейбо и Т. Персонса.

Где в спирали полипептидной цепочки Н — водород, С — углерод, О — кислород, N- азот, R- радикал аминокислоты.

«Отдельные спирали удерживаются как единое целое возникающими между ними водородными связями. По-видимому, при сжатии и растяжении мышц происходит перестройка водородных связей» [2, с. 483].

А что же представляют собой водородные связи? Для того, чтобы иметь физическое понятие о водородных связях, обратимся к представлению об атоме как осцилляторе, которое ввёл ещё Макс Планк в 1900 году. После него такое представление об атоме как осцилляторе возобновилось только в работах современного немецкого физика Мартина Мюллера. Известна его Тюбингенская модель атома, сформулированная им в 1992–1994 годах в двух его работах. М. Мюллер называет колебания электрона в протонном поле механической осцилляцией с переходом потенциальной и кинетической энергий друг в друга по типу «протон играет в пинг-понг» электроном.

В работах /6, 7, 12/ было введено понятие о строении атома как о дипольной структуре, осуществляющей внутриатомное взаимодействие с эфиром: диполями атомов в пульсационном процессе растяжения-сжатия поглощаются и испускаются эфирные частицы нейтрино. Диполь — это элементарный магнитик, полюса которого p+ иe-скреплены в ячейку силой однажды выскочившего нейтрино. Пульсация осуществляется под действием внедряющегося в диполь нейтрино, создающего электродвижущую силу электромагнитной индукции для скачка электрона от протона в диполе. В атоме водорода электрон пульсирует относительно протона вправо и влево вдоль оси диполя, так что во время растяжения диполя нейтрино поглощается, во время сжатия — излучается вдоль оси диполя. Такая природа атома объясняет не только механизм внутриатомного взаимодействия с эфиром, но и взаимодействия атомов друг с другом в молекулярных и водородных межмолекулярных связях как пульсационный процесс. В 2001 году в нашей работе /11/ был опубликован вывод о постоянстве частоты пульсаций атома данной разновидности при любых возможных энергетических состояниях (так называемых «энергиях уровня»). Частота пульсации атома сохраняется вплоть до ионизации атома, когда атом теряет пульсирующий электрон /7/.

Для атома водорода нами было показано, что его диполь пульсирует с постоянной угловой частотой 3,29.10151/s (3,29 Femto), обмениваясь с эфиром эфирными частицами нейтрино. Доказательством постоянства частоты пульсации водородных диполей является число Ридберга как одной из наиболее точно измеренных констант физики:

R H= щ/c =3,2888028.10151/s /2,99792.1010 cm/s = 109676,9 cm -1,

постоянство которой зиждется именно на постоянстве частоты пульсации соотносительно со скоростью света. Переменной величиной является амплитуда пульсации.

Перейти на страницу:

Похожие книги