Цилиндр двигателя укреплен на кривошипной камере. На боковых стенках цилиндра внизу расположены три окна: продувочное окно, сообщающее каналом цилиндр с кривошипной камерой, выпускное окно, сообщающее цилиндр с внешней средой, и впускное окно, сообщающее кривошипную камеру с карбюратором. Верхняя кромка выпускного окна находится несколько выше верхней кромки продувочного окна. Нижняя кромка выпускного и продувочного окон расположены на уровне днища поршня при его положении в нижней мертвой точке.
Рассмотрим рабочий процесс двухтактного двигателя. Предположим, что за предыдущий рабочий цикл произошло сжатие рабочей смеси в кривошипной камере и цилиндр двигателя в основном заполнен свежей горючей смесью, поступившей через продувочное окно из кривошипной камеры.
При перемещении от нижней мертвой точки к верхней поршень вначале перекрывает своей боковой стенкой продувочное окно, а затем открывает впускное окно. Так как при перемещении поршня к верхней мертвой точке объем кривошипной камеры увеличивается, в камере создается разрежение. Атмосферный воздух, проходя через смесительную камеру карбюратора, под действием разрежения подхватывает капельки горючего, выходящего из распылителя карбюратора, обдувая их, тем самым способствует испарению.
Образующаяся горючая смесь поступает в кривошипную камеру. Испарение оставшихся в горючей смеси капелек горючего будет продолжаться в кривошипной камере за счет отбора тепла от горячих стенок цилиндра, поршня и кривошипной камеры. Когда поршень дойдет до верхней мертвой точки, давление горючей смеси в кривошипной камере достигнет 0,8
В дальнейшем, при перемещении поршня от верхней мертвой точки к нижней, объем кривошипной камеры начинает уменьшаться, но на некотором участке хода поршня горючая смесь продолжает поступать из карбюратора в кривошипную камеру, так как в этот период давление в камере ниже, чем внешнее. Впускное окно закрывается в момент выравнивания внешнего давления и давления в кривошипной камере. После закрытия впускного окна давление горючей смеси продолжает повышаться за счет ее сжатия и нагревания от стенок поршня и цилиндра.
При подходе к нижней мертвой точке поршень сначала откроет выпускное, а затем и продувочное окно. К моменту открытия продувочного окна давление в кривошипной камере достигнет 1,3
При положении поршня в нижней мертвой точке продолжается поступление горючей смеси из кривошипной камеры в цилиндр двигателя (рис. 12,
Поскольку давление рабочей смеси в картере двигателя несколько больше, чем в цилиндре, то в начале перемещения поршня от нижней мертвой точки к верхней продолжается продувка цилиндра горючей смесью. При этом горючая смесь перемешивается с остаточными газами. Продувка закончится в момент перекрытия поршнем продувочного окна.
При дальнейшем перемещении поршня вверх некоторая часть рабочей смеси выталкивается поршнем в выпускное окно и только после перекрытия поршнем выпускного окна начинается сжатие рабочей смеси в цилиндре двигателя. Поэтому перемещение поршня от нижней мертвой точки до момента перекрытия поршнем выпускного окна называется потерянным ходом.
Остальная часть хода до верхней мертвой точки называется полезным ходом.
В процессе сжатия рабочая смесь в цилиндре двигателя нагревается, и к концу сжатия давление в цилиндре достигает 5–7
На рис. 13 показано изменение давления в цилиндре двигателя в такте сжатия.
Рис. 13.
На линии
Отложим на линии
Давление и температура рабочей смеси в конце сжатия в цилиндре двухтактного двигателя будут меньше, чем у подобного четырехтактного двигателя. Это в основном вызывается утечкой рабочей смеси из цилиндра за счет запаздывания закрытия выпускного окна и повышенным содержанием в рабочей смеси отработавших газов.