Читаем Млечный Путь №2 (2) 2012 полностью

Может быть, мы научимся справляться с релятивностью гладкости. Не знаю. Я ведь пишу не о будущем, а о прошлом и о настоящем. В настоящем мы не умеем, в прошлом мы и не подозревали, что должны уметь».

Вот ключевая мысль пименовского эссе! Здесь Револьт Иванович обращает внимание на то, что разные гладкости не изоморфны.

Изоморфизм – «одинаковость формы». А если нет изоморфизма, значит, пространства имеют разные структуры, а неизоморфные объекты и «устроены по-разному».

Так, бурные политические события на рубеже тысячелетий привели к тому, что политические карты мира 1990 и 2011 гг. топологически совершенно разные объекты!

Почти одновременно с Р. И. Пименовым на экзотические гладкости и их применение к теории пространства-времени в 1987 году обратил внимание и А. К. Гуц, который тогда же обсуждал эти проблемы с Р. И. Пименовым.

Итак, даже в «классических случаях», описываемых «нашим» четырехмерным пространством-временем, мы, оказывается, каким-то образом ВЫБИРАЕМ среди множества РЕАЛЬНЫХ форм существования объектов только одну и живем в этом своем выборе!

Каков механизм этого выбора, как конкретно описать его математически – это и есть «прикладные вопросы», над которыми нужно работать. При этом, как заметил А. К. Гуц, «главная трудность состоит в том, что сама гладкость как-то не описывается без гладкости. Чего-то мы пока не понимаем».

Но вывод из «абстрактно-математических» результатов дифференциальной топологии вполне очевиден: физическое многомирие с математической точки зрения возможно.

Это ясно и самому Р. Пименову, который так говорит о мировоззренческих следствиях своего анализа применимости дифференциальных уравнений для описания реальности: «А это означает, что все, что писалось о детерминизме в XVIII–XX веках, НАДО ЗАЧЕРКНУТЬ. Ведь если у нас нет критерия „абсолютно различить“ гладкую траекторию от негладкой… то спрашивается, по каким же траекториям переносится „настоящее“ физическое воздействие?.. Вся идеология использования дифференциальных уравнений для детерминации будущего на основе настоящего и прошлого рушится из-за релятивизации гладкости… Детерминизм не был „выведен логически“ или „доказан математически“. Мы всего лишь ВЕРИЛИ В ДЕТЕРМИНИЗМ».

Со времен Лапласа принято считать, что у всякого следствия есть однозначная причина. «Классический математик» переводит это на математический язык – у любой функции есть дифференциал. В этом и состоит сущность лапласовского детерминизма.

После осознания сказанного Р. И. Пименовым, этот детерминизм, как мировоззренческий принцип, перестает быть всеобщим.

И круг задач, которые подчиняются парадигме дифференциальных уравнений, уже не всеобъемлющ. А среди первых разделов физики, актуальные интересы которых выходят за его пределы, следует указать на современную космологию.

<p>Причинность в космологии</p>

Тебе, Чей Сумрак был так ярок,

Чей Голос тихостью зовет, -

Приподними небесных арок

Все опускающийся свод.

А. Блок

Перейти на страницу:

Похожие книги