Читаем Млечный Путь № 4 2020 полностью

Закон N1 - это абсолютный закон физики. Его строго соблюдают даже в квантовой механике.

Закон N 2, однако, является законом физики "де-факто". Его не соблюдают строго, а соблюдают только в среднем. Итак, средние значения в термодинамике имеют тенденцию быть довольно надежными, потому что, если каждая частица делает ставки и есть триллионы триллионов частиц, тогда закон больших чисел говорит, что среднее значение так же хорошо, как закон. Но это все еще не строгий закон физики.

Все строгие законы физики "обратимы во времени", что означает, что причины и следствия фактически взаимозаменяемы. Теоретически, в закрытой системе чашка может подпрыгнуть и собраться заново. Это просто маловероятно.

Любому энтузиасту физики все это известно, но мало известно, почему это так. Почему энтропия увеличивается в одном направлении, а не в другом? Если все физические процессы обратимы во времени, то это должно позволить некоторым процессам увеличивать энтропию в одном направлении, в то время как другие увеличивают энтропию в обратном направлении времени. Однако мы не видим, чтобы это произошло на самом деле. Энтропия всех физических процессов увеличивается только в одном направлении.

Главный вопрос: почему?

Эта проблема называется проблемой стрелы времени.

Было предложено довольно много решений этой дилеммы:

1. Вселенная просто началась в состоянии с низкой энтропией. Это спонтанно и вряд ли объясняет, почему всегда наблюдается рост энтропии.

2. Расширение Вселенной направляет термодинамическую стрелу времени в одном направлении. Почему это должно быть так, неизвестно, поскольку термодинамическая стрела относится ко всем системам, независимо от их размеров.

3. Физические законы неполны и должны отражать необратимые процессы, вещи, которые не симметричны во времени. Текущие физические законы зависят от этой симметрии, поэтому было бы большим прорывом обнаружить, что временная симметрия не соблюдается (это будет называться нарушением зарядовой четности или времени CPT и будет столь же значительным, как демонстрация нарушения симметрии Лоренца). .

4. Квантовая декогеренция - это взаимодействие чистых квантовых состояний (таких как изолированные частицы) с макроскопическими объектами - вызывает стрелу времени. Для меня это просто перевод вопроса от энтропии к декогеренции. Почему декогеренция в одном направлении, а не в другом, если квантовая механика обратима во времени?

Однако наиболее действенное решение проблемы сосредоточено не на дефекте физического закона, а на нас или, точнее, на любой информационной системе.

Это информационная или основанная на памяти стрела времени, которая указывает, что информационное содержание системы, то есть ее память, увеличивается с увеличением энтропии. Таким образом, во всех системах хранения информации время течет в сторону увеличения энтропии, несмотря на то, что время обратимо.

Никакие процессы, которые развиваются в сторону более низкой энтропии, не запоминаются.

В 1950 году Эрвин Шредингер, один из основоположников квантовой механики, описал эту точку зрения с помощью статистической механики. Предположим, у вас есть система в неравновесном состоянии, например, кристалл, набравший энергию и плавящийся в жидкость. Теперь, прежде чем он достигнет равновесия, вы разделите его на четыре изолированные части.

Шредингер показал, что каждая из этих частей выберет направление времени и будет развиваться к равновесию в этом направлении. Эволюция замкнутой изолированной системы определит для себя направление времени. Следовательно, время t Эйнштейна, Ньютона и даже Больцмана отличается от феноменологической, то есть наблюдаемой стрелы времени, которая есть t или -t. В отличие от физического времени, феноменологическое время, время, которое мы переживаем, представляет собой градиент энтропии, путь увеличения, который определяется через пространство-время.

Информационная теория времени сочетает стрелу градиента энтропии Шредингера с теорией информации Шеннона.

Клод Шеннон был просто еще одним исследователем в Bell Labs, работавшим над телефонной системой. Учитывая, что телефонная система тесно связана с передачей информации, он начал думать о том, как охарактеризовать информацию с точки зрения энтропии. Он разработал теорию, согласно которой энтропия связана с количеством битов, двоичных нулей и единиц, которые может нести система. Это связано с количеством различных конфигураций, которые может иметь система. Система с низкой энтропией может иметь только несколько конфигураций, то есть всего несколько бит. Система с высокой энтропией может иметь множество конфигураций, очень много битов.

Эта взаимосвязь предполагает, что течение времени, которое мы воспринимаем, и градиент энтропии связаны с направлением роста информации. Что еще более важно, это также предполагает, что, хотя рост энтропии добавляет воспоминания, уменьшение энтропии уносит их.

Перейти на страницу:

Похожие книги

Абсолютное оружие
Абсолютное оружие

 Те, кто помнит прежние времена, знают, что самой редкой книжкой в знаменитой «мировской» серии «Зарубежная фантастика» был сборник Роберта Шекли «Паломничество на Землю». За книгой охотились, платили спекулянтам немыслимые деньги, гордились обладанием ею, а неудачники, которых сборник обошел стороной, завидовали счастливцам. Одни считают, что дело в небольшом тираже, другие — что книга была изъята по цензурным причинам, но, думается, правда не в этом. Откройте издание 1966 года наугад на любой странице, и вас затянет водоворот фантазии, где весело, где ни тени скуки, где мудрость не рядится в строгую судейскую мантию, а хитрость, глупость и прочие житейские сорняки всегда остаются с носом. В этом весь Шекли — мудрый, светлый, веселый мастер, который и рассмешит, и подскажет самый простой ответ на любой из самых трудных вопросов, которые задает нам жизнь.

Александр Алексеевич Зиборов , Гарри Гаррисон , Илья Деревянко , Юрий Валерьевич Ершов , Юрий Ершов

Фантастика / Боевик / Детективы / Самиздат, сетевая литература / Социально-психологическая фантастика