Ричи случайно обратил внимание на слабенькую вспышку в NGC 6946. Обычно исследователь видит прежде всего то, что хочет видеть. Он ищет новые звёзды, по опыту зная, что вспышка бывает яркой. Если кто-то скажет ему, что в данном конкретном случае новая может оказаться слабее в тысячи раз, он отмахнется. Хотя потом, когда случайно всё-таки обратит внимание на такую очень слабую новую, объяснение найдётся легко. Ведь ясно: чем дальше от нас вспыхивает звезда, тем она слабее. И если она настолько слабая, то какие же бездны пространства нас разделяют!
В каждой обсерватории в те годы были "стеклянные библиотеки", где хранились тысячи фотопластинок - фотографий различных участков неба. После сообщения Ричи астрономы стали просматривать фотопластинки и (теперь они знали, что искать!) нашли слабые вспышки новых не только в М 31, но и в других спиральных туманностях. За два месяца исследователи обнаружили одиннадцать таких вспышек. Из них четыре - в туманности М 31, не считая знаменитой и ни на что не похожей S Андромеды.
Однако даже после этого никто не обратил внимания на разительное отличие вспышек новых от S Андромеды. Все наблюдали одно и то же, но "видели" разное!
Физическую природу М 31 разгадали лишь в 1924 году Эдвин Хаббл и Джордж Ричи. Они получили прекрасные фотографии туманности Андромеды, на которых было видно, что её спирали на самом деле вовсе не туманные пятна, а россыпи звёзд. Более того, Хаббл обнаружил среди них обычные переменные звёзды цефеиды, каких много в нашей Галактике.
Излучение цефеид пульсирует строго периодически, причём период пульсаций так же строго связан с их светимостью в максимуме. Поэтому цефеиды называют "звёздными маяками". Расстояния до цефеид определяют точнее всего, ведь период пульсаций звёзд этого типа можно измерить с высокой степенью надежности, и по величине периода определить светимость звезды в максимуме. А если известна светимость звезды и её яркость на небе, легко вычислить расстояние. По цефеидам определяют расстояния до звёздных скоплений в нашей Галактике и до других относительно близких галактик, в которых удаётся обнаружить "звёздные маяки".
Хаббл оценил, наконец, расстояние до М 31, оказавшееся равным 1,5 миллиона световых лет. В 300 раз больше, чем полагал Бери! Вот почему вспышки новых в этой туманности выглядели такими слабыми - звёзды эти оказались на самом деле в 300 раз дальше, чем предполагали исследователи.
К концу двадцатых годов ХХ века астрономам стало ясно, что вспышка новой - вовсе не свидетельство смерти звезды. Конечно, такая вспышка бесследно для звезды не проходит. От неё с большой скоростью - до нескольких тысяч километров в секунду - отделяется облачко звёздного вещества и уносится в межзвёздное пространство. Удалось даже оценить, сколько именно вещества выбрасывает звезда. Оказалось, немного - всего одну стотысячную долю массы Солнца.
S Aндромеды - исключение из правила. Американский астроном Гебер Кертис, один из сторонников идеи "островных Вселенных", писал, что не все новые звёзды "обязаны" иметь в максимуме одинаковую светимость. Природа разнообразна, одна вспышка ярче, другая слабее. S Андромеды отличалась от обычной новой, как луч прожектора от пламени свечи. В галактике М 31 насчитываются сотни миллиардов звёзд, и, тем не менее, S Андромеды светила всего в несколько раз слабее, чем все эти звезды вместе! И звезда Тихо была очень яркой новой, и звезда Кеплера, и звезда-гостья 1054 года... Возможно, Кертис провёл бы аналогию с ними, но он просто не знал об этих вспышках.
Таким образом, постановка задачи определяет и подход к её решению. Кертис исследовал туманности, и S Андромеды была для него досадным исключением. А тем временем шведский астроном Кнут Лундмарк читал исторические документы, составляя список ярких вспышек, описанных в старых хрониках. В списке Лундмарка такие яркие новые, как звезды Тихо и Кеплера, и им подобные явления, были не исключением, а правилом. В 1921 году Лундмарк опубликовал список звёзд, содержавший 60 объектов, которые он так же как и Кертис, называл новыми звёздами.
Оба учёных одинаково называли два разных явления. Такая путаница была неизбежна. Ведь то, что наблюдали астрономы, само по себе ещё ничего не означало. Если познание невозможно без наблюдений, то оно также невозможно и без интерпретаций. Правильная интерпретация порой может оказаться важнее наблюдений. Пример - туманность Андромеды. Да, её спектр подобен спектру Солнца. Но такой же спектр имеет и Луна! Два совершенно разных небесных тела, а спектры очень похожи. Без дополнительных независимых аргументов нельзя сделать правильных выводов. Таким аргументом стало разделение туманности Андромеды на звёзды.