Вполне возможно, что в будущем удастся найти в природе или, что более вероятно, искусственно создать антивещество.
Источником света в фотонной ракете служит процесс аннигиляции. Из особых резервуаров вещестзо и антивещество в виде потоков частиц поступают в фокус зеркала, где, соединяясь, превращаются в излучение. Так как при этом возникают мощные электромагнитные волны очень высокой частоты, безусловно смертельные для человека, жилые помещения ракеты должны быть отнесены как можно дальше от ее своеобразного двигателя. И, конечно, следует предусмотреть какие-то экранирующие — заграждающие- средства биологической защиты.
Насколько эффективен процесс аннигиляции, можно судить по таким примерам. Если бы вещество этой страницы удалось полностью превратить в излучение, то выделившейся при этом энергии хватило бы, чтобы вскипятить 200 тысяч тонн воды! За
Таким образом, двигатель фотонной ракеты действительно идеален — с более высоким КПД двигатель существовать не может.
Есть ли что-нибудь общее между фотонной ракетой и… телегой? Да, да, самой обыкновенной, деревянной телегой. Представьте себе, что есть, причем в данном случае сходство
Возможно, что некоторые из читателей удивятся, узнав, что телега с лошадью представляет собою
Все используемые человечеством двигатели есть, в сущности, двигатели реактивные, связанные с «отбрасыванием» той или иной массы. Даже сам человек не может перемещаться иначе, как только реактивным способом, отталкиваясь от земли. Поэтому заманчиво создать единую теорию всех двигателей, от телеги до фотонных ракет. В этой теории полет межзвездных космических кораблей может рассматриваться только как некоторый частный случай.
Такая теория создана нашим современником, немецким ученым Еугеном Зенгером [43]. Она связывает между собой технические достижения прошлого, настоящего и будущего. Она убедительно показывает, что создание фотонных ракет есть естественное звено в техническом прогрессе реактивных двигателей.
Теоретические расчеты, выполненные Зенгером, приводят к выводу, что фотонные ракеты могут при достаточно длительном разгоне достичь любых, следовательно и «околосветовых», скоростей. Само собой разумеется, что предел всякой относительной скорости — скорость света — не может быть ими достигнут, или, тем более, превзойден. Несмотря на это, в известном смысле, — каком именно, рассказано ниже, — фотонные ракеты смогут лететь быстрее света.
Работа Зенгера носит теоретический, а не технический характер. Вполне естественно, что техническое осуществление фотонных ракет связано с исключительными трудностями.
Так, например, пока совершенно неясно, из какого материала удастся изготовить рефлектор — отражатель фотонной ракеты; температура аннигиляционного излучения столь велика, что любое земное вещество оно почти мгновенно обратит в раскаленный газ. Возможно, что эту проблему удастся решить, преобразовав «первичное» коротковолновое излучение двигателя в излучение длинноволновое, например, радиоволны, как предлагает советский ученый Г.И.Бабат. Однако трудно пока сказать, как должен выглядеть спасательный преобразователь излучения.
Еще больше хлопот создадут для будущих конструкторов фотонной ракеты ее топливные баки. В чем, например, хранить антивещество?
Бак из обычного вещества явно непригоден: соединившись с антивеществом, он мгновенно аннигилируется. Пожалуй, единственный выход заключается в изоляции антивещества с помощью магнитных полей, как это делается сейчас для плазмы. Тогда «баки» фотонной ракеты, очевидно, будут иметь мало общего с современным представлением о них.
Если не удастся изобрести каких-нибудь радикальных способов биологической защиты от высокой температуры и излучения, фотонным ракетам придется придавать «космические» размеры. По современному разумению межзвездные космические корабли должны иметь в длину десятки, а может быть, и сотни километров!