Эти множества событий не представляют собой сферы, как в случае евклидовой геометрии. Читатель найдет представление множеств (i), (ii) и (iii) на рис. 3. Заметим, что множество (iii) представляет собой двойной конус, состоящий из двух конусов, соединенных своими вершинами (один конус направлен «в верх» пространства-времени, т. е. к тому, что традиционно называется будущим, тогда как другой конус направлен «в низ» пространства-времени, т. е. к прошлому). Поскольку этот конус представляет собой события, связанные с событием Р посредством светового луча, он называется «световым конусом». Множество (i) имеет форму песочных часов (иными словами, выглядит как два конуса, соединенные своими вершинами, а затем деформированные таким образом, чтобы образовать горловину, через которую может сыпаться песок). Множество (ii) состоит из двух отдельных поверхностей: одна находится в верхней части светового конуса (направленного в будущее), а другая – в нижней его части (направленной в прошлое).
Рисунок 3, на котором представлена хроногеометрия пространства-времени, по своему виду напоминает то, что можно было бы назвать
Мировая шахматная доска Минковского ничего не содержит. Она представляет собой пространственно-временной фон, который обрамляет существование материи и ее взаимодействия. Чтобы придать наблюдаемое значение хроногеометрии этого мира, необходимо заполнить его объектами, способными почувствовать эту хроногеометрию. Напомним, что, как и в приведенном выше примере мира насекомых на полу, объект, такой как насекомое, имеющий заметную продолжительность жизни, оставляет след в виде трубы, проходящей снизу вверх в пространстве-времени. Жизнь человека также описывается подобной пространственно-временной трубой (рис. 4). Эта труба соответствует ходулям в приведенном выше отрывке из Пруста. Отметим также, что интуиция Пруста не обманула: эта труба занимает место, гораздо более значительное во времени, нежели в пространстве.
Действительно, при измерении, как уже говорилось, продолжительности в секундах, а расстояния в световых секундах эта труба имеет (временную) высоту в несколько
Наконец, важно понять, что происходит с парадоксом близнецов в пространстве-времени. Для понимания сути этого явления необходимо рассмотреть хроногеометрию пространственно-временного треугольника. Пусть это будет пространственно-временной треугольник ABC (рис. 5). Стороны треугольника представляют собой пространственно-временные линии, связанные с парой часов идентичного производства. Первые часы идут вдоль стороны AC (направленной «по времени», т. е. соответствующей отрицательному квадрату интервала), в то время как вторые часы идут изначально вдоль стороны AB, а затем вдоль стороны BC (обе эти стороны также направлены по времени). Тот факт, что стороны АВ и ВС наклонены по отношению к стороне AC, соответствует при разложении пространства-времени на обычное пространство и время утверждению, что вторые часы, положение которых совпадало с положением первых в начале (а именно в событии A), начинают удаляться, а затем приближаются с постоянной скоростью, пока не встретятся снова в пространственно-временной точке C.